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ABSTRACT

A novel deterministic method for blind source separation is
presented. In contrast to common methods such as indepen-
dent component analysis, only mild assumptions are imposed
on the sources. On the contrary, the method exploits a hy-
pothesized (approximate) intrinsic low-rank structure of the
mixing vectors. This is a very natural assumption for prob-
lems with many sensors. As such, the blind source separation
problem can be reformulated as the computation of a tensor
decomposition by applying a low-rank approximation to the
tensorized mixing vectors. This allows the introduction of
blind source separation in certain big data applications, where
other methods fall short.

Index Terms— Blind source separation, big data, higher-
order tensor, tensor decomposition, low-rank approximation

1. INTRODUCTION

The goal of blind source separation (BSS) is to reconstruct a
collection of unobserved sources based only on a collection of
observed signals. In this paper, the latter are unknown linear
instantaneous mixtures of the unknown sources. Applications
can be found in telecommunications, signal processing and
biomedical sciences [1–3]. In general, the solution of the BSS
problem is not unique. Hence, several approaches have been
proposed that impose additional assumptions on the sources.

A well-known BSS method, called independent com-
ponent analysis (ICA), assumes statistically independent
sources [4]. Recently, a deterministic method based on
block term decompositions, called block component anal-
ysis (BCA), was introduced in [5]. Elaborating on this idea,
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new methods were proposed that assume the sources can
be written as exponential polynomials or rational functions,
which allows broad deterministic modeling [6–9].

Previous methods are not applicable to problems with a
massive amount of sensors because they do not scale well.
This is especially true for ICA, of which several variants use
(full) higher-order statistics (HOS) that suffer from the curse
of dimensionality [10]. In a big data setting, the mixture pos-
sibly has some smooth structure because of the many and
closely located sensors. In this paper, we exploit this underly-
ing compactness in order to cope with the large-scale aspect.
A comparable strategy has proven to be very successful in the
field of tensor-based scientific computing [11].

More specifically, we approximate the tensorized mixing
vectors with a low-rank approximation and demonstrate that
the BSS problem subsequently boils down to the computation
of a tensor decomposition. This method uniquely determines
both the sources and the mixing vectors of large-scale prob-
lems under mild conditions. Moreover, it imposes only mild
assumptions on the sources and because of its deterministic
nature it even works well if only a few samples are present.

1.1. Notation and basic definitions

Tensors, denoted by calligraphic letters (e.g., A), are higher-
order generalizations of vectors and matrices, denoted by bold
lowercase (e.g., a) and bold uppercase (e.g., A) letters, re-
spectively. The (i1, i2, . . . , iN )th entry of an N th-order ten-
sorA ∈ KI1×I2×···×IN is denoted by ai1i2···iN with K mean-
ing R or C. The nth element in a sequence is indicated by a
superscript between parentheses (e.g., {a(n)}Nn=1).

A mode-n vector of a tensor is defined by fixing every in-
dex except the nth and is a natural extension of the rows and
columns of a matrix. The mode-n unfolding of A is a matrix
A(n) with the mode-n vectors of A as its columns (see [12,
13] for formal definitions). The vectorization ofAmaps each
element ai1i2···iN onto vec(A)j with j = 1 +

∑N
k=1(ik −

1)Jk and Jk =
∏k−1
m=1 Im. The outer product of A and

B ∈ KJ1×J2×···×JM is defined as (A ⊗ B)i1i2···iN j1j2···jM =
ai1i2···iN bj1j2···jM . The Kronecker product of a ∈ KI and
b ∈ KJ is defined as a⊗ b =

[
a1b

T a2b
T · · · aIb

T
]T

.
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1.2. Multilinear algebraic prerequisites

An N th-order tensor has rank one if it can be written as the
outer product of N non-zero vectors. The rank of a tensor is
defined as the minimal number of rank-1 terms that generate
the tensor as their sum. The multilinear rank of an N th-order
tensor is equal to the tuple of mode-n ranks, which are defined
as the ranks of the mode-n unfoldings of the tensor.

A polyadic decomposition (PD) writes an N th-order ten-
sor A ∈ KI1×I2×···×IN as a sum of R rank-1 terms:

A =

R∑
r=1

u(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r . (1)

The columns of the factor matrices U(n) ∈ KIn×R are equal
to the factor vectors u

(n)
r , r = 1, . . . , R. The PD is called

canonical (CPD) when R is equal to the rank of A. The
CPD is a powerful model for several applications within sig-
nal processing, biomedical sciences, computer vision, ma-
chine learning and data mining [12,13]. The decomposition is
essentially unique, i.e., up to trivial permutations of the rank-
1 terms and scalings of the factors in the same term, under
rather mild conditions [14–16].

A block term decomposition (BTD) in rank-(L,L, 1)
terms writes a third-order tensor X ∈ KI×J×K as a sum of
R terms with multilinear rank-(L,L, 1):

X =

R∑
r=1

(ArB
T
r) ⊗ cr,

in which Ar ∈ KI×L and Br ∈ KJ×L have full column rank
L. These block terms are more general than the simple rank-
1 terms of the PD. Hence, they allow the modeling of more
complex phenomena, see e.g., [5,17]. Other types of BTDs as
well as associated uniqueness results are presented in [6, 18].

2. BLIND SOURCE SEPARATION BASED ON
LOW-RANK TENSOR APPROXIMATIONS

Blind source separation (BSS) uses the following model [4]:

X = MS+N, (2)

with X ∈ KM×K and S ∈ KR×K containing K samples of
the M observed signals and R source signals, respectively;
M ∈ KM×R is the mixing matrix and N ∈ KM×K is the
additive noise. The goal of BSS is to retrieve the unknown
mixing vectors in M and/or the unknown sources in S, given
only the observed data X. In the derivation of our method we
ignore the noise N for notational simplicity; the influence will
be investigated in Subsection 3.1 by means of simulations.

2.1. Kronecker product structure

Many real-life signals are compressible, i.e., they depend on
much less parameters than their finite length [19, 20]. One

way to represent a signal in a possibly compact way is a
(higher-order) low-rank approximation of the tensorized sig-
nal [11, 21]. This notion is exploited in a novel way for BSS
in this paper. Particularly, in a big data setting the number
of sensors M and/or sensor density becomes very large, lead-
ing to possibly very smooth mixing vectors in (2) (i.e., the
columns of M). Exploiting this underlying compactness on
the mixture level allows us to cope with large-scale BSS.

Let us illustrate this as follows: assume we approximate
a vector m ∈ KM with a Kronecker product of two smaller
vectors, i.e., m = b⊗a, with a ∈ KI , b ∈ KJ andM = IJ .
This is actually a rank-1 approximation. Indeed, the Kro-
necker and outer product are related through a vectorization:
b ⊗ a = vec(a ⊗ b), i.e., a (second-order) rank-1 term. The
number of coefficients decreases from M = IJ to O(I + J),
which is a decrease of one order of magnitude if I ≈ J .

More generally, larger reductions can be obtained by
considering a Kronecker product of N vectors, which is
the vectorization of an outer product of N vectors, i.e.,⊗N

n=1 u
(n) = vec

(
⊗N
n=1u

(N−n+1)
)

with u(n) ∈ KIn ,
n = 1, . . . , N . On the other hand, a rank-1 approximation
might not be sufficient; hence, we take a sum of P such Kro-
necker products resulting in a low-rank approximation [11]:

m =

P∑
p=1

N⊗
n=1

u(n)
p = vec

(
P∑
p=1

⊗N
n=1u

(N−n+1)
p

)
, (3)

in which u
(n)
p ∈ KIn and M =

∏N
n=1 In. In other words,

approximating a vector with a sum of Kronecker products
amounts to a low-rank approximation of the ‘folded’ vec-
tor, i.e., a low-rank tensor approximation. Note that the
number of coefficients decreases from M =

∏N
n=1 In to

O(P
∑N
n=1 In). If In = I for n = 1, . . . , N , then M = IN

reduces to O(PNI), i.e., a reduction of N − 1 orders of
magnitude. Hence, we have a decrease in function of the
number of Kronecker products and an increase proportional
to the number of rank-1 terms P in the sum.

2.2. Tensorization

We now demonstrate that, if the mixing vectors can be ap-
proximated by sums of Kronecker products, the BSS problem
can be reformulated as the computation of a decomposition
of the tensorized observed data matrix. Let us illustrate this
as follows: assume the mixing vectors have a simple Kro-
necker product structure, e.g., mr = br ⊗ ar with ar ∈ KI ,
br ∈ KJ , and assume that M = IJ , then we have that:

X =

R∑
r=1

(br ⊗ ar) ⊗ sr. (4)

Equation (4) can be tensorized by stacking each matricized
column of the data matrix X in a third-order tensor X ∈
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KI×J×K . Remember that a Kronecker product is a vector-
ized outer product; consequently, we have that:

X =

R∑
r=1

ar ⊗ br ⊗ sr. (5)

Equation (5) is a CPD as defined in (1). Hence, the above de-
scribed tensorization strategy reformulates the BSS problem
as the computation of a CPD of a third-order tensor of rankR.
The number of coefficients reduces from RM = RIJ to
O(R(I + J)) (cf. above). The idea can be generalized to a
sum of P Kronecker products of N vectors analogous to (3):

X =

R∑
r=1

(
P∑
p=1

N⊗
n=1

u(n)
pr

)
⊗ sr,

in which u
(n)
pr ∈ KIn , n = 1, . . . , N and M =

∏N
n=1 In,

where we have chosen a fixed P for each source r. Applying
the same tensorization as before amounts to:

X =

R∑
r=1

(
P∑
p=1

⊗N
n=1u

(N−n+1)
pr

)
⊗ sr. (6)

Hence, we get a decomposition of an (N+1)th-order tensor in
R (rank-P ⊗ vector) terms [22]. The number of coefficients
decreases from RM to O(RP

∑N
n=1 In) (cf. above). Note

that (6) is a rank-(P, P, 1) BTD if N = 2.
The proposed method simultaneously and uniquely de-

termines the mixing vectors and the sources under the mild
uniqueness conditions of the CPD and BTD. It is 1) applica-
ble for large M , as is clear from the possibly large reductions
in the number of coefficients, and 2) is deterministic, meaning
that it even works well if the number of samples K is small,
which is a clear advantage compared to stochastic methods
such as ICA. Moreover, 3) the method imposes only mild con-
ditions on the sources in contrast to existing methods (e.g.,
linear independence instead of statistical independence).

3. RESULTS AND DISCUSSION

3.1. Simulations

Two experiments are presented in which we investigate 1) the
influence of the noise level for several K with exact second-
order rank-2 mixing vectors (N = 2 and P = 2) and 2) the
influence of deviations from a second-order rank-1 structure
(N = 2 and P = 1) for several SNRs. Both experiments
have M = 2500 sensors, and R = 2 i.i.d. zero-mean unit-
variance Gaussian random source signals of length K. Note
that ICA techniques based on (full) HOS would be infeasible
here as the number of entries in a Qth-order statistic equals
O(MQ). Moreover, ICA is not applicable here because of the
Gaussian sources [4]. We use a second-order rank-2 and rank-
1 approximation with I = J = 50 for the first and second
experiment, respectively. The approximation consists of only
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Fig. 1. Median across 100 experiments of the relative error on
the mixing vectors (left) and the sources (right) as a function
of SNR for K = 10 ( ), 100 ( ), and 1000 ( ). The
mixing vectors satisfy a second-order rank-2 structure.

O(I + J) = O(100) values per rank-1 term instead of IJ =
2500, which is the maximal reduction for the given order.

The mixing vectors and sources can only be found up to
scaling and permutation, which are the standard indetermi-
nacies in BSS. Hence, the mixing vectors and sources are
first optimally scaled and permuted with respect to the true
ones. The relative error is then defined as the relative dif-
ference in Frobenius norm, i.e., we have relative error εA =
||A − Â||F/||A||F with Â an optimally scaled and permuted
estimate for A. The CPD and rank-(L,L, 1)-BTD are com-
puted using cpd and btd nls from the MATLAB package
Tensorlab, respectively, using a generalized eigenvalue de-
composition as initialization for the latter [18, 23].

The results of the first experiment are shown in Figure 1.
Although the method is deterministic, and therefore requires
only a few samples, it is beneficial to increase K under noisy
conditions in order to obtain better accuracy. However, the
number of samples can still be (very) low in contrast to ICA.
The relative error on the sources does not improve for increas-
ingK because we also have to estimate longer source signals.

In the second experiment each mixing vector is defined as
the vectorization of a random matrix with exponentially de-
caying singular values: mr = vec(Urdiag(σ)VT

r), in which
σ = e−αt with t containing min(I, J) uniformly discretized
samples on the interval [0, 1]; Ur and Vr are random or-
thogonal matrices of compatible dimensions. The parameter
α controls the exponential decay of the singular values: in-
creasing α results in more rank-1-like mixing vectors and vice
versa. We take K = 20. The relative error on the mixing vec-
tors and the sources for several SNRs is shown in Figure 2.
Increasing α decreases the relative error; this is especially
clear for high SNR. The decrease in relative error eventually
stagnates due to noise. The effect of α is less strong on the
sources, probably because the rank-1 approximation already
captures a lot of the information quite well. Also, the noise
on the sources is possibly (largely) compensated because this
is the shorter factor (K � I, J) in the decomposition.
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Fig. 2. Median across 100 experiments of the relative error on
the mixing vectors (left) and the sources (right) for an SNR
of 0 dB ( ), 10 dB ( ), 20 dB ( ), and 30 dB ( ).
The rank-1-ness of the mixing vectors is controlled with α.

3.2. Applications

Recent advances in biomedical sciences have led to appli-
cations with many sensors and/or high sensor density such
as wireless body area networks (WBANs). These are sensor
systems, located in and/or around the body, that measure sev-
eral different biomedical signals such as temperature, heart-
beat and neuronal activity. They are currently investigated for
electroencephalography (EEG) [24] and electrocorticography
(ECoG) [25] with high spatial resolution as a possible means
for long-term neuromonitoring. In such cases our method can
provide an efficient separation of the different sources of neu-
ronal activity. Moreover, the data rate of the wireless connec-
tion can be reduced because of the deterministic nature of the
method. The problem becomes really large-scale when we
consider neural dust: here, thousands of miniature sensors,
called neural probes, are dispersed throughout the brain [26].

Our method can also be applied in cases where the mixing
vectors have an exact low-rank structure. An example of this
are uniform linear arrays (ULAs) with far-field sources that
emit narrowband signals. Here, the mixing matrix M has a
Vandermonde structure because of the fact that (short) time
delays amount to phase shifts of the signal [27]. Then, each
mixing vector can be written as a Kronecker product of some
smaller vectors, e.g., [1, a, a2, a3]T =

(
[1, a2]⊗ [1, a]

)T
,

i.e., as a rank-1 term. If the signals propagate through P dis-
tinct paths [28], e.g., due to reflections or scattering caused by
objects on the path, each mixing vector is low-rank. Note that
this Vandermonde structure arises often in signal processing,
see [29] and references therein. Assuming a rank-1 structure
in such cases is relevant and provides an efficient and deter-
ministic processing of the data. Finally, our method can also
be applied when the sources are located in the near field. In
this case the Vandermonde structure is only approximate and
a low-rank approximation can be applied.

3.3. Future research

In this paper we have limited ourselves to sensor data that are
linear instantaneous mixtures of the sources. However, the
strategy outlined above can be extended to blind system iden-
tification (BSI), also known as equalization, in which the out-
puts are linear convolutive mixtures of the inputs [30]. More
specifically, the same strategy can be applied to the identifi-
cation of finite impulse response (FIR) systems of the form:
x[k] =

∑R
r=1

∑L−1
l=0 m

(l)
r sr[k− l], with memory L; note that

this reduces to BSS if L = 1. This problem will be addressed
in a follow-up paper with more simulations and applications.

4. CONCLUSION

We have presented a new deterministic method for blind
source separation (BSS) of large-scale problems under mild
uniqueness conditions. The method can cope with many sen-
sors by exploiting a hypothesized low-rank structure of the
mixture. This is done by approximating the mixing vectors
by sums of Kronecker products or, in other words, approxi-
mating the tensorized mixing vectors by sums of higher-order
rank-1 terms. This strategy allowed us to reformulate the
BSS problem as the computation of a tensor decomposition.
Moreover, the method is deterministic, meaning that it does
not need a large number of samples. Finally, in contrast to
existing methods, the method imposes only mild assumptions
on the sources. The generalization of this strategy to BSI,
including FIR systems, will be addressed in a future paper.
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