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ABSTRACT

The hypercomplex number quaternion is an extension to
the complex number and is widely used in computer graph-
ic, image processing and multiple dimensional linear time-
invariant systems. In this paper, the quaternion algebra is
applied to head-related impulse response (HRIR) modeling.
Four HRIRs measured at different elevations or for different
ears are used to construct a quaternion impulse response. A
two dimensional quaternion common factor decomposition
(QCFD) algorithm is developed to represent each quaternion
impulse response as the convolution of two factor impulse
responses. By using the proposed QCFD algorithm, quater-
nion impulse responses with the same elevation will share
the same elevation factor while quaternion impulses with
the same azimuth will share the same azimuth factor. Ex-
perimental results show that the QCFD algorithm has better
performance as compared to the traditional two-dimension
common factor decomposition (CFD) algorithm.

Index Terms— HRIR, Quaternion, CFD

1. INTRODUCTION

Quaternion algebra introduced by Hamilton in 1843 is a high
dimension extension to the traditional complex number [1].
Due to its compact representation and efficient implementa-
tion of rotations [2][3], quaternion has been widely used in
computer graphic. Recently, quaternion processing is extend-
ed to multiple dimensional linear time-invariant (LTI) system-
s modeling because each component of a quaternion can be
used to represent each aspect of a system [4]. For example, in
image processing the red, green and blue components of each
pixel are used to construct a quaternion number and in seis-
mology the seismic wave along the three orthogonal direc-
tions are used as the three imaginary components of a quater-
nion signal [5]. By exploiting the correlation between differ-
ent components of the signal, quaternion analysis usually has
better performance.

Head-related impulse response (HRIR) or its frequency
domain counterpart head-related transfer function (HRTF) de-
scribes the filtering effect of human torso, head and pinna to
a sound propagating from a specific spatial position to the

eardrum of a listener and is the core part in virtual 3D sound
synthesis [6]. A lot of research works have been focused on
HRIR modeling to reduce the storage requirement of the vir-
tual 3D sound system. Nevertheless, some similarities be-
tween HRIRs measured at different positions or for differen-
t ears are not exploited by the traditional methods. For ex-
ample, a pair of HRIRs measured at two positions which are
symmetric along the front plane (the vertical plane that goes
through both ears) is usually very similar. The similarity of
such HRIR pair is the main cause for extensive front-back
errors reported in subjective listening tests [7]. Besides, the
pair of HRIRs measured at two symmetric positions for d-
ifferent ears are also similar due to the symmetry of human
body. To exploit the similarity between different HRIRs, the
quaternion algebra is applied in the proposed HRIR model.
HRIRs which are measured at different positions and are sim-
ilar to each other are used to construct a quaternion impulse
response. Then a quaternion common factor decomposition
(QCFD) algorithm is developed to represent each quaternion
impulse response as the convolution of two factor impulse
responses. Compared with the real number two-dimension
common factor decomposition (CFD) modeling [8], QCFD
modeling allows the HRIRs which are similar to each other
to share both elevation factor response and azimuth factor re-
sponse and helps to remove more redundance.

The remaining parts of the paper are organized as follows.
Section 2 gives a brief introduction of the quaternion algebra.
Section 3 develops the quaternion common factor decomposi-
tion algorithm. The developed algorithm is evaluated in Sec-
tion 4.

2. QUATERNION ALGEBRA

There are extensive literature on the algebra of quaternion
numbers and only a brief introduction is given in this section.
A quaternion number q is defined as

q = qs + qxi + qyj + qzk (1)

where qs, qx, qy and qz are four real numbers and i, j and k
are three imaginary units which satisfy

i2 = j2 = k2 = −1 (2)
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The addition and multiplication of two quaternion numbers
p = ps + pxi + pyj + pzk and q = qs + qxi + qyj + qzk are
defined in Eq. (3) and Eq. (4), respectively.

p+ q = ps + qs + (px + qx)i+ (py + qy)j+ (pz + qz)k (3)

pq = psqs − pxqx − pyqy − pzqz

+i(psqx + pxqs + pyqz − pzqy)

+j(psqy − pxqz + pyqs + pzqx)

+k(psqz + pxqy − pyqx + pzqs)

(4)

It is worth noticing that the quaternion multiplication is not
commutative, which means that pq doesn’t equal to qp.

Given the definition of quaternion addition and multipli-
cation, the convolution h[n] of two quaternion impulse re-
sponses p[n] = ps[n] + px[n]i + py[n]j + pzk and q[n] =
qs[n] + qx[n]i + qy[n]j + qzk is defined in a similar way as
real convolution

h[n] =
∞∑

l=−∞

p[l]q[n− l] (5)

Due to the non-commutativity of quaternion multiplication,
the quaternion convolution is also non-commutative.

3. QUATERNION TWO-DIMENSION COMMON
FACTOR DECOMPOSITION

In this section a quaternion two-dimension common factor de-
composition (QCFD) algorithm is derived based on minimiz-
ing the mean square error (MSE) between the four compo-
nents of the original quaternion impulse response and that of
the reconstructed quaternion impulse response.

3.1. Quaternion Factor Decomposition

Given a Length-L quaternion impulse response q[n] =
qs[n] + qx[n]i + qy[n]j + qzk, two quaternion factor impulse
responses length-L1 c[n] = cs[n] + cx[n]i + cy[n]j + czk
and length-L2 d[n] = ds[n] + dx[n]i + dy[n]j + dzk can be
found to model it so that c[n] ⊗ d[n] approximates q[n]. The
quaternion convolution defined in Eq. (5) can be expanded
and implemented via 16 real convolutions as illustrated by
Eq. (6)

Eq. (6) can be reformulated in matrix form as

q =Csds − Cxdx − Cydy − Czdz
+i(Csdx + Cxds + Cydz − Czdy)
+j(Csdy − Cxdz + Cyds + Czdx)
+k(Csdz + Cxdy − Cydx + Czds)

(7)

where ds = [ds[1] · · · ds[L2]]
′ and dx, dy, dz and q = qs +

iqx + jqy + kqk are constructed in a similar way and

Cs =



cs[1] 0
. . . cs[1]

cs[L1]
. . . . . .

cs[L1]
. . . cs[1]
. . . . . .0 cs[L1]


L×L2

and Cx, Cy and Cz are constructed in a similar way.
Eq. (7) can be expressed by component as

qs =Csds − Cxdx − Cydy − Czdz
qx =Csdx + Cxds + Cydz − Czdy
qy =Csdy − Cxdz + Cyds + Czdx
qz =Csdz + Cxdy − Cydx + Czds

(8)

Eq. (8) can be re-organized as

q̃ def
=


qs
qx
qy
qz

=

Cs −Cx −Cy −Cz

Cx Cs −Cz Cy

Cy Cz Cs −Cx

Cz −Cy Cx Cs




ds
dx

dy
dz

 def
= Cd̃

(9)
Given q[n] and one of the factor response c[n], the other fac-
tor response d[n] that minimizes the total MSE between all
components of q[n] and c[n]⊗ d[n] is calculated by

d̃ = C†q̃ (10)

where (•)† denotes pseudo-inverse.
Due to the non-commutativity of quaternion multiplica-

tion and convolution, when given q[n] and d[n], the best c[n]
that minimizes the total MSE between all components of q[n]
and c[n]⊗ d[n] can not be calculated in the same way, which
is different from the real number common factor decompo-
sition [8]. Nevertheless, the formula to optimize c[n] from
given q[n] and d[n] can be derived in a similar way.

3.2. Quaternion Common Factor Decomposition

Given a set of quaternion impulse responses qk[n], k =
1, · · · ,K and a quaternion factor impulse dk[n] for each of
them, another quaternion factor impulse c[n] that minimizes
the total MSE between qk[n] and dk[n]⊗ c[n] for all k should
satisfy

q̃k = Dk c̃ k = 1, · · · ,K (11)

where Dk is constructed in the same way as C, c̃ and q̃k are
constructed in the same way as q̃ and the best c[n] is calculat-
ed by

c̃ = D†q̃ (12)
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c[n]⊗ d[n] =cs[n]⊗ ds[n]− cx[n]⊗ dx[n]− cy[n]⊗ dy[n]− cz[n]⊗ dz[n]

+i(cs[n]⊗ dx[n] + cx[n]⊗ ds[n] + cy[n]⊗ dz[n]− cz[n]⊗ dy[n])

+j(cs[n]⊗ dy[n]− cx[n]⊗ dz[n] + cy[n]⊗ ds[n] + cz[n]⊗ dx[n])

+k(cs[n]⊗ dz[n] + cx[n]⊗ dy[n]− cy[n]⊗ dx[n] + cz[n]⊗ ds[n])

(6)

where D = [D′
1 · · · D′

K ]′ and q̃ = [q̃′
1 · · · q̃′K ]′.

Once again, the best c[n] that minimizes the total MSE
between qk[n] and c[n] ⊗ dk[n] for all k can not be calculat-
ed using the same formula due to the non-commutativity of
quaternion multiplication and convolution. However, it can
be calculated in a similar way.

3.3. Quaternion Two-Dimension Factor Decomposition

Given a 3-dimensional quaternion dataset Q(n, θ, ϕ) ∈
HN×I×K , k = 1, · · · ,K, where H denotes the set of
quaternion numbers, a quaternion 2D-CFD (QCFD) algo-
rithm is proposed to represent the dataset with two sets of
common factors. The QCFD algorithm is implemented in an
iterative way similar to the real number CFD [8] as shown in
Table 1.

Table 1. Optimization Procedure of QCFD
For HRIR set of each azimuth Q(n, ϕ, θk) k = 1, · · · ,K

Apply Quaternion CFD to this set of HRIRs and get the CF
End for
All K CFs make up a matrix A ∈ RN1×K

Repeat
For each elevation ϕi i = 1, · · · , I

Get the set of impulse responses in this elevation H(n, ϕi, θ)
Use CFs in A as the IFs of this HRIR set
Extract the CF for this elevation

End for
All I CFs make up a matrix E ∈ RN2×I

For HRIR set of each azimuth Q(n, ϕ, θk) k = 1, · · · ,K
Use CFs in E as the IFs of this HRIR set
Extract the CF for this azimuth

End for
All K CFs make up a matrix A ∈ RN1×K

Until Convergence

After the QCFD modeling, the original quaternion im-
pulse response can be reconstructed by

Q(n, ϕ, θ) = E(n, θ)
⊗

A(n, ϕ) (13)

and the reconstructed HRIR can be obtained from each com-
ponent of the reconstructed quaternion impulse response.

It is worth mentioning that the QCFD modeling can be
implemented in another way so that the original quaternion
impulse response can be reconstructed by

Q(n, ϕ, θ) = A(n, ϕ)
⊗

E(n, θ) (14)

. However, there is no essential difference between these two
representations and the modeling errors for these two repre-
sentations are the same.

4. EXPERIMENT AND RESULT

4.1. Experiment Setup

In this section, the proposed QCFD algorithm is applied to
model the Subject 3 HRIR in CIPIC HRIR database [9]. Four
HRIRs are used to construct a quaternion impulse response.
The modeling distortion is evaluated by Spectral Distortion
(SD) score and Waveform Fit score defined as

SD =

√√√√ 1

L

L∑
k=1

(20 log10
|Hk|
|Ĥk|

)2
Fit = (1−

∑L
n=1 e[n]

2∑L
n=1 h[n]

2
)× 100%

where h[n] and ĥ[n] are the measured and the modeled
HRIRs, Hk and Ĥk are their spectra, respectively, e[n] =

h[n]− ĥ[n].

4.2. Quaternion Impulse Response Construction

It is desirable that the four HRIRs are similar to each oth-
er so that the QCFD will have a better performance. In this
section, three schemes are proposed to construct a quaternion
impulse response by using four HRIRs measured at differen-
t positions or for different ears. To facilitate specifying the
position clearly, the inter-aural pole coordinate system as de-
scribed in [9] is adopted, in which (0◦, 0◦), (0◦,−90◦) and
(90◦, 0◦) stand for the front, left and up, respectively, and t-
wo azimuthes θ and −θ are symmetric along the median plane
while two elevations ϕ and 180◦ −ϕ are symmetric along the
frontal plane.

• Adjacent scheme: four HRIRs measured for a single
ear at the same azimuth and at adjacent elevations are used.

• FB-SP scheme: two left ear HRIRs measured at (ϕ, θ)
and (180◦−ϕ, θ) and two right ear HRIRs measured at (ϕ, θ)
and (180◦ − ϕ, θ) are used.

• FB-DP scheme: two left ear HRIRs measured at (ϕ, θ)
and (180◦ − ϕ, θ) and two right ear HRIRs measured at
(ϕ,−θ) and (180◦ − ϕ,−θ) are used.

4.3. Experiment Result

In experiment I, QCFD is applied to a set of 340 HRIRs with
ϕ ∈ [30◦ 145◦] and θ ∈ [−45◦ 45◦]. The quaternion impulse
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response is constructed by using the Adjacent scheme. The
modeling error in MSE achieved in each iteration step of the
QCFD algorithm is displayed in Fig. 1. It is seen that the
modeling error decreases steadily with iterations.

Fig. 1. Convergence curve for the QCFD algorithm

In experiment II, QCFD is applied to a set of 608 pairs of
HRIRs with elevation ϕ ∈ [−45◦ 45◦] in the front and ϕ ∈
[135◦ − 225◦] in the back and with azimuth θ ∈ [−45◦ 45◦].
A set of 152 quaternion impulse responses are constructed
by using each of the three schemes proposed and QCFD al-
gorithm with varying elevation lengths is applied to model
the quaternion impulse responses. The distortion of the pro-
posed modeling is displayed in Fig. 2 and in Fig. 3. For
comparision, the real number CFD modeling which is bet-
ter than PCA-based methods and CAPZ-based methods [8] is
also applied to the same HRIR set and its distortion is also
displayed in these two figures. It is observed from Fig. 2 and
Fig. 3 that QCFD algorithm outperforms real number CFD
algorithm no matter which scheme is adopted in quaternion
impulse response construction. This shows that the QCFD
can exploit the inter-HRIR similarity to reduce the storage
for HRIR. Meanwhile, the spectrum difference between front-
back HRIR is mainly retained, as show in Fig. 4.

Fig. 2. Model Accuracy in Fit of Quaternion Common Fac-
tor Decomposition for each Quaternion Construction Scheme
and varying Elevation Factor Length

In Experiment III, QCFD is applied to the set of quater-
nion impulse responses constructed by using FB-DP scheme
from a set of 500 pairs of HRIRs with ϕ ∈ [34◦ − 146◦] and
θ ∈ [−80◦ 80◦]. The distortion of the modeling for differ-
ent elevation factor lengths are listed in Table 2. The storage
requirement in term of number of parameters needed to repre-
sent the whole evaluated HRIR dataset is also calculated and
shown in Table 2. For comparison, the distortion and storage

Fig. 3. Model Accuracy in SD of Quaternion Common Fac-
tor Decomposition for each Quaternion Construction Scheme
and varying Elevation Factor Length

Fig. 4. Spectra of measured and reconstructed HRTF pairs

requirement of the real number CFD modeling is also listed
in Table 2. It is seen that QCFD modeling can achieve higher
model accuracy with comparable storage requirement.

Table 2. Distortion and storage requirement of QCFD algo-
rithm and real number CFD algorithm with different elevation
factor length Le

Le Fit/% SD/dB Storage
QCFD CFD QCFD CFD QCFD CFD

5 94.8 94.1 5.16 5.41 19800 10000
10 96.1 95.3 4.56 4.71 19500 9950
70 97.4 96.4 3.87 4.17 15900 9350
130 97.5 96.5 3.80 4.10 12300 8750
190 97.6 96.2 3.79 4.13 8700 8150
197 96.6 94.9 3.94 4.25 8280 8080

5. CONCLUSION

A HRIR model based on quaternion algebra is proposed to
reduce the storage of HRIR dataset. Four HRIRs which are
similar to each other are used to constructed a quaternion im-
pulse response. A quaternion common factor decomposition
(QCFD) algorithm is derived to represent the quaternion im-
pulse response set, which are 3-dimensional dataset, with two
sets of factor responses to reduce the storage. Compared with
real number CFD algorithm, QCFD algorithm can exploit the
similarity between HRIRs of the same quaternion impulse re-
sponse and achieves higher modeling accuracy with compa-
rable storage.
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