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ABSTRACT

In this paper, a new nonlinear subspace learning technique
for class-specific data representation based on an optimized
class representation is described. An iterative optimization
scheme is formulated where both the optimal nonlinear data
projection and the optimal class representation are determined
at each optimization step. This approach is tested on human
face and action recognition problems, where its performance
is compared with that of the standard class-specific subspace
learning approach, as well as other nonlinear discriminant
subspace learning techniques. Experimental results denote
the effectiveness of this new approach, since it consistently
outperforms the standard one and outperforms other nonlin-
ear discriminant subspace learning techniques in most cases.

Index Terms— Class-specific discriminant learning,
Nonlinear subspace learning, Action recognition, Face recog-
nition

1. INTRODUCTION

Standard Discriminant Learning techniques, like Linear Dis-
criminant Analysis (LDA) [1, 2], Kernel Discriminant Anal-
ysis (KDA) [3], (kernel) Spectral Regression (KSR) [4] and
Class-specific (kernel) Discriminant Analysis (CSKDA) [5],
represent classes by adopting the corresponding class mean
vectors. Thus, they inherently set the assumption that the
classes forming the classification problem follow unimodal
normal distributions having the same covariance structure [2].
However, these are two strong assumptions that are difficult
to be met in real classification problems. It has been recently
shown that, when these assumptions are not met, the adop-
tion of optimized class representations, other than the class
mean vectors, leads to the determination of a discriminant
subspace of increased class discrimination power [6, 7]. In
this paper, we follow this line of work and describe an opti-
mization scheme for the determination of such an optimized
class representation for class-specific nonlinear data projec-
tion that leads to the determination of a discriminant subspace
having increased class discrimination power.

In detail, in this paper we describe a new class-specific
discrimination criterion which is used to optimize both the

data projections and the class representation for the deter-
mination of a low-dimensional feature space of increased
discrimination power. This class-specific criterion is for-
mulated so that to exploit data representations in arbitrary-
dimensional Hilbert spaces for nonlinear data projection and
classification [8–11]. An iterative optimization schemes is
applied to this end, which optimizes the class-specific cri-
terion with respect to both the data projection matrix and
the class representation. For the calculation of the optimal
data projection matrix, an optimization process based on the
Spectral Regression framework [4] is adopted in order to
obtain a fast optimization method, when compared to the
standard approach [3, 5]. We compare the performance of the
Class-specific Reference Discriminant Analysis (CSRDA) al-
gorithm with that of other Discriminant Analysis-based clas-
sification schemes, i.e., KDA, KSR and CSKDA, as well as
with the performance of the Kernel Support Vector Machine
(KSVM) classifier, which is one of standard choices in non-
linear classification problems. Experiments are conducted on
six publicly available datasets, namely the ORL [12], AR [13]
and Extended YALE-B [14] for face recognition and Holly-
wood2 [15], Olympic Sports [16] and ASLAN [17] datasets
for human action recognition.

The rest of the paper is organized as follows. In Section 2,
an overview of related work is provided. The CSRDA method
is described in Section 3. Experimental results evaluating its
performance are provided in Section 4. Finally, conclusions
are drawn in Section 5.

2. RELATED WORK

Let us denote by xi ∈ RD, i = 1, . . . , N a set of N vec-
tors, each belonging to a class appearing in a class set C =
{1, . . . , C}. Let us also denote by cj ∈ RN , j = 1, . . . , C,
C binary vectors having elements equal to cji = 1 in the
case where xi belongs to class j and to cji = 0, otherwise.
We use Nj0 and Nj1 in order to denote the number of zeros
and ones in cj , respectively. By using xi, i = 1, . . . , N and
cj , j = 1, . . . , C, a feature space of reduced dimensional-
ity d < D can be determined by learning a nonlinear data
projection of the vectors xi to vectors zi ∈ Rd.

In order to exploit kernel techniques for nonlinear data
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projection, the input space RD is mapped to an arbitrary-
dimensional feature space F (usually having the properties
of Hilbert spaces [8–11, 18]) by employing a function ϕ(·) :
xi ∈ RD → ϕ(xi) ∈ F determining a nonlinear mapping
from the input space RD to the arbitrary-dimensional space
F . In this space, we would like to determine a data projec-
tion matrix W that will be used to map a given sample xi to
a low-dimensional feature space Rdj of increased discrimina-
tion power:

zi = WTϕ(xi), zi ∈ Rdj . (1)

In practice, since the multiplication in (1) can not be directly
computed, the so-called kernel trick [8, 9] is adopted. That
is, the multiplication in (1) is inherently computed by using
dot-products in F .

Standard nonlinear Discriminant Learning techniques,
like KDA [3] and KSR [4], solve an optimization problem in-
volving relations between the within-class and between-class
scatters of the training data in F . That is, they employ the
class mean vectors:

ϕ(mj) =
1

Nj1

∑
i,cji=1

ϕ(xi) (2)

in order to calculate the within-class and between-class scatter
matrices:

Sw =

C∑
j=1

N∑
i=1

cji (ϕ(xi)− ϕ(mj))
T
(ϕ(xi)− ϕ(mj)) ,

(3)

Sb =
C∑

j=1

Nj1 (ϕ(mj)− ϕ(m))
T
(ϕ(mj)− ϕ(m)) , (4)

where ϕ(m) = 1
N

∑N
i=1 ϕ(xi) is the mean of the entire train-

ing set in F , and calculate the data projection matrix W by
solving an optimization problem that is function of Sw, Sb,
e.g., the trace ratio optimization problem [1, 19]:

W∗ = argmin
W

trace{WTSwW}
trace{WTSbW}

. (5)

While the multi-class discriminant learning approach de-
scribed above is able to determine a reduced-dimensionality
feature space of increased class discrimination, it has been
shown that class-specific discriminant learning methods are
able to outperform multi-class ones in several tasks, like fa-
cial image classification [5]. In this case, the objective is
the determination of a reduced-dimensionality feature space
Rdj , dj < D, where class j is better discriminated from all
others. This is achieved by optimizing the trace ratio criterion
using the following scatter matrices:

Sw =
N∑
i=1

cji (ϕ(xi)− ϕ(mj))
T
(ϕ(xi)− ϕ(mj)) , (6)

Sb =
∑
k ̸=j

N∑
i=1

cki (ϕ(xi)− ϕ(mj))
T
(ϕ(xi)− ϕ(mj)) ,

(7)
where the class mean vector ϕ(mj) is employed for the rep-
resentation of class j in F . It has been recently shown that,
for the multi-class subspace learning problem, the adoption
of optimized class representations increases class discrimina-
tion in the reduced-dimensionality feature space, leading to
enhanced performance [6, 7]. In the following Section, we
describe a class-specific optimization scheme that can be em-
ployed for the determination of both optimized class repre-
sentation and data projection.

3. CLASS-SPECIFIC PROJECTIONS BASED ON
OPTIMIZED REPRESENTATION

Let us denote by ϕ(µj) ∈ F a so-called reference vector
that will be used in order to represent class j. ϕ(µj) is not
restricted to be the class mean vector in F . ϕ(µj) can be
any vector that enhances the discrimination of class j from
the remaining ones in the discriminant space Rdj . As has
been previously described, we would like to learn a data pro-
jection matrix W which maps F to a low-dimensional dis-
criminant space Rdj where the samples belonging to class j
are as close as possible to the image of ϕ(µj) in Rdj , i.e.,
zj = WTϕ(µj), while the samples belonging to the remain-
ing action classes are as far as possible from it. That is, we
would like to learn a projection matrix W ∈ R|F|×dj mini-
mizing:

Dj =
∑

i,cji=1

∥WTϕ(xi)−WTϕ(µj)∥22 (8)

and maximizing:

D0 =
∑

i,cji=0

∥WTϕ(xi)−WTϕ(µj)∥22. (9)

W can be determined by solving for:

J (W) =

∑
i,cji=0 ∥WTϕ(xi)−WTϕ(µj)∥22∑
i,cji=1 ∥WTϕ(xi)−WTϕ(µj)∥22

=
trace

(
WTS0W

)
trace (WTSjW)

, (10)

where Sj , S0 are defined by:

Sj =
∑

i,cji=1

(
ϕ(xi)− ϕ(µj)

)(
ϕ(xi)− ϕ(µj)

)T

(11)

S0 =
∑

i,cji=0

(
ϕ(xi)− ϕ(µj)

)(
ϕ(xi)− ϕ(µj)

)T

(12)

The direct maximization of (10) is intractable since Sj ,
S0 express the intra-class and out-of-class variances of the
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training samples with respect to ϕ(µj), respectively (Sj , S0

are matrices of arbitrary dimensions). In the following sub-
section, we describe an optimization process that can be used
in order to maximize (10) for the determination of the op-
timal data projection W, which is based on kernel Spectral
Regression [4]. Subsequently, we describe an optimization
process that can be used in order to determine the optimal
class representation ϕ(µj) (given W) and the iterative opti-
mization process that can be used in order to optimize J with
respect to both W and ϕ(µj). Finally, we describe a classifi-
cation process that can be employed in combination with this
method.

3.1. Spectral Regression-based optimization of (10)

In order to directly optimize J in (10), we express W as a
linear combination of the training data (represented in F) [8,
9, 18], i.e.,:

W =

N∑
i=1

ϕ(xi)α
T
i = ΦA. (13)

A ∈ RN×dj is a matrix containing the reconstruction weights
of W, with respect to the training data in F . Φ is a ma-
trix containing the data representations in F . Without loss
of generality, we assume that the data are ordered so that
Φ = [ΦjΦ0], where Φj is a matrix containing the training
data belonging to class j and Φ0 is a matrix containing the
remaining samples.

Let us denote by v an eigenvector of the problem S0v =
λSjv with eigenvalue λ. v can be expressed as a linear com-
bination of the training data in F , i.e., v =

∑N
i=1 αiϕ(xi).

By setting Ka = q, this eigenanalysis problem can be trans-
formed to the following equivalent problem:

P0q = λPjq. (14)

Thus, the reconstruction weights matrix A can be performed
by applying a two step procedure:
• Solution of the eigenproblem P0q = λPjq, which

is tractable since P0,Pj ∈ RN×N . The solution of
this problem leads to the determination of a matrix
Q = [q1, . . . ,qdj ], where qi is the eigenvector corre-
sponding to the i-th largest eigenvalue.

• Determination of the matrix A = [a1, . . . ,adj ], where
Kai = qi. In the case where K is non-singular, the vec-
tors ai are given by ai = K−1qi. When this is not true,
the vectors ai can be obtained by solving the following
set of linear equations:

(K+ δI)ai = qi. (15)

where δ > 0 is a regularization parameter. Thus, ai is
given by ai = (K+ δI)

−1
qi.

As can be seen, the above-described optimization process re-
quires the solution of one eigenanalysis problem (14) and the

Table 1. Performance for different training percentage on the
face recognition datasets.

AR KSVM KSR KDA CSKDA CSRDA
10% 20.22% 35.74% 37.26% 27.13% 29.39%
20% 27.86% 42.48% 44.24% 44.1% 44.71%
30% 46.56% 66.67% 67.22% 68.56% 69.17%
40% 44.13% 65.25% 66.31% 66.81% 68%
50% 61.62% 85.69% 86.77% 87.77% 88.54%
ORL KSVM KSR KDA CSKDA CSRDA
10% 44.44% 57.22% 56.67% 51.67% 54.17%
20% 49.06% 86.56% 87.81% 70.94% 75.31%
30% 76.07% 89.64% 90.36% 90.71% 91.43%
40% 84.17% 92.22% 93.75% 93.75% 94.58%
50% 88% 93.5% 93% 93% 96%
Yalle KSVM KSR KDA CSKDA CSRDA
10% 53.9% 69.69% 70.01% 70.51% 71.69%
20% 75.13% 85.35% 81.84% 86.02% 87.56%
30% 81.11% 87.89% 79.06% 88.77% 89.94%
40% 89.4% 93.56% 88.99% 93.63% 94.18%
50% 93.34% 96.38% 94.65% 96.79% 97.62%

inversion of a N × N matrix, leading to a time complexity
equal to O(N3).

3.2. Reference Class Vector calculation

By observing that Sj , S0 are functions of ϕ(µj), as detailed
in (10), and by using ϕ(µj) = Φjbj [8, 9, 18], ϕ(µj) can be
inherently determined by maximizing J with respect to bj ,
i.e.,:

b∗
j = argmax

bj

J (W,bj). (16)

By solving for ∇bi (J (W,bj)) = 0, we obtain:

b∗
j =

h+
(
h2 + 4q (b+ f)Nj1e

)1/2
2qeNj1

1Nj1 . (17)

where h = fNj0 − bNj1, q = N2
j1 + Nj1Nj0, b =

tr
(
ATK0K

T
0 A

)
, e = tr

(
ATΦTϕ(µj)ϕ(µj)

TΦA
)
, f =

tr
(
ATKjK

T
j A

)
and Kj = ΦTΦj , K0 = ΦTΦ0.

3.3. Optimization with respect to both A and bj

Taking into account that A is a function of bj and that bj

is a function of A, a direct maximization of J with respect
to both A and bj is difficult. In order to maximize J with
respect to both A and bj , we employ an iterative optimization
scheme, where A and bj are iteratively updated until (J (t+
1)−J (t))/J (t) < ϵ, where ϵ is a small positive value (equal
to ϵ = 10−6 in our experiments).

23rd European Signal Processing Conference (EUSIPCO)

2538



3.4. Classification (test phase)

In order to perform classification, we work as follows. Af-
ter the determination of the discriminant space Rdj , both the
training data xi, i = 1, . . . , N and the reference class vec-
tor ϕ(µj) are mapped to that space and zi, i = 1, . . . , N ,
zj are obtained. Subsequently, we calculate distance vectors
di ∈ Rdj having elements equal to:

dik = |zik − zjk|, k = 1, . . . , dj , (18)

where zik, zjk are the k-th elements of zi and zj , respectively.
| · | denotes the absolute value operator. By using di, classi-
fication can be performed based on a linear classifier, e.g.,
linear SVM. In case of multi-class classification, we train C
linear SVM classifiers in an one-versus-rest manner using the
above described process. A test sample is introduced to all the
C classifiers and is assigned to the class providing the maxi-
mal probability, similar to [20, 21].

4. EXPERIMENTS

In this section, we present experiments conducted in order to
compare the performance of the two class-specific discrim-
inant learning approaches. We have employed six publicly
available datasets to this end. These are: the ORL [12],
AR [13] and Extended YALE-B [14] (face recognition) and
the Hollywood2 [15], Olympic Sports [16] and ASLAN [17]
(human action recognition) datasets. In all our experiments
we compare the performance of the Class-Specific Refer-
ence Discriminant Analysis (CSRDA) with that of the Class-
Specific Kernel Discriminant Analysis (CSKDA) [5], as well
as with Kernel Spectral Regression (KSR) [4], Kernel Dis-
criminant Analysis (KDA) [3] and kernel Support Vector
Machine (SVM)-based classification [22].

In all the experiments involving facial image classifica-
tion we have employed the RBF kernel function. In human
action recognition, we used the state-of-the-art methods pro-
posed in [17, 23] as baseline approaches. On the ASLAN
dataset we employ a set of 12 histogram similarity values
expressing the similarity of pairs of videos represented by
using the BoW model for HOG, HOF and HNF descriptors
evaluated on STIP video locations [24] combined with a lin-
ear classification scheme. For the remaining datasets, we
employ the BoW-based video representation by using HOG,
HOF, MBHx, MBHy and (normalized) Trajectory descrip-
tors evaluated on the trajectories of densely sampled inter-
est points [23] and classification is performed by a nonlinear
classification scheme using the RBF-χ2 kernel function.

4.1. Results

We have applied the competing algorithms on the face recog-
nition data sets. Since there is not a widely adopted experi-
mental protocol for these datasets, we randomly partition the

Table 2. Performance on the action recognition data sets.

Olympic Sports Hollywood2 ASLAN
SVM 86.56% 61.51% 60.88 ± 0.77%
KSR 88.35% 61.34% 54.9 ± 0.71%
KDA 88.64% 61.04% 51.20 ± 0.43%
CSKDA 87.65% 60.5% 54.9 ± 0.71%
CSKRDA 88.89% 61.69% 61.03± 0.54%

datasets in training and test sets as follows: we randomly se-
lect a subset of the facial images depicting each of the persons
in each dataset in order to form the training set and we keep
the remaining facial images for evaluation. Experimental re-
sults obtained by applying the competing algorithms are illus-
trated in Table 1. Class-specific classification schemes outper-
formed the multi-class ones in all but one cases. By optimiz-
ing both the data projection matrix and the class representa-
tion, CSRDA enhances class discrimination when compared
to CSKDA, leading to enhanced classification performance.
Table 2 illustrates the performance obtained by applying the
competing classification schemes on the action recognition
data sets. It can be seen that CSRDA provides satisfactory
performance in all cases.

5. CONCLUSIONS

In this paper, we described a new nonlinear subspace learn-
ing technique for class-specific data representation based on
an optimized class representation. An iterative optimization
scheme was formulated and evaluated to this end, where both
the optimal nonlinear data projection and the optimal class
representation are determined at each optimization step. Ex-
perimental results on six publicly available data sets denote
the effectiveness of this class-specific approach, since it con-
sistently outperforms the standard class-specific one and out-
performs other nonlinear discriminant subspace learning tech-
niques in most cases.
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