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ABSTRACT
In MIMO Radar schemes, sparse scenarios have been suc-
cessfully exploited by compressed sensing (CS) techniques.
We address the ill-conditioning inherent to the linear model of
a 3D Radar imaging system, by proposing a two-step decou-
pling procedure which induces structure, and allows for fast
matrix products to efficiently recover the target image. This
is accomplished by further combining it with an Approximate
Message Passing algorithm, that yields two iterative versions
for range and cross-range image recovery. Simulations sug-
gest that besides computational efficiency, decoupling the full
model matrix gives us more freedom in selecting the CS regu-
larization levels. An FDTD based experiment also shows that
the algorithms are robust in real life situations where non-
ideal antennas and multiple scattering naturally occur.

Index Terms— MIMO Radar, Compressed Sensing

1. INTRODUCTION

In many Multi-Input-Multi-Output (MIMO) Radar scenar-
ios, range and cross-range parameters are commonly treated
separately [1],[2]. The received signals normally undergo a
bank of matched filters, whose delays are set in correspon-
dence to the desired range bins, for which the directions and
reflectances of the targets are identified. In [1], e.g., this is
achieved by least-squares (LS) and Capon beamformation,
while [2] derives recovery conditions for compressed sens-
ing (CS) matrices constructed by randomly located arrays.

Recently, in [3], we have approached the MIMO radar
problem as a joint range/cross-range convolution model, and
obtained approximate conditions for which the mutual coher-
ence of the overall system sensing matrix is minimized. In
this paper, we take a step further by decoupling the full Radar
relation into two separate sparse problems, albeit ones that
exhibit more structured models, suitable for efficient imple-
mentations. Although the analysis of the mutual coherence
conditions for each matrix alone bears equivalence to the one
obtained in the joint model, the approach here induces a level
of structure that can be taken advantage from when using
state-of-the-art iterative algorithms for compressed sensing,
such as the Complex Approximate Message Passing (CAMP)
algorithm studied in [4].

We present two efficient algorithms for CS radar imaging,
and compare their simulated results: the first one is the itera-
tive implementation of the joint range/cross-range formation
of [3], while the second is the proposed two-step implementa-
tion. Besides efficiency, simulations indicate that the two-step
version is more robust, as the regularization parameters can be
adjusted separately. A finite-difference time-domain (FDTD)
experiment is also included in order to verify the robustness
of the algorithm in a more realistic scenario, with multiple
scattering and non-ideal antennas.

2. JOINT RANGE/CROSSRANGE MODEL FOR
MIMO RADARS

Consider the MIMO radar arrangement depicted in Fig. 1,
consisting of an array of MT isotropic transmitters, each
positioned at qm, and a second array of MR receivers, at
positions denoted by q̃n. The antennas send narrowband
pulses pi(t), with center frequency ω0 through a homoge-
neous medium, which are scattered by K far-field targets
with reflectance s̄k. These are located at a distance D, with
directions given by unitary vectors denoted by r̄k, which in
turn are detected by the receiving array.
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Fig. 1. Simplified schematic for a MIMO radar. All targets are
located at the same range.

The manifold vectors for the transmitting array are de-
fined as
a(r̄k)=

[
ej

ω0
c0

r̄Tk q0 ej
ω0
c0

r̄Tk q1 · · · ej
ω0
c0

r̄Tk qMT −1

]T
(1)

with analogous definition for the receiving manifold vector
denoted by b(r̄k), where c0 , λ0/2πω0 is the speed of propa-
gation for the underlying medium.
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Under the well known Born approximation [5], the re-
ceived waveform can be written as:

yr(t) =

K−1∑
k=0

x̄kb(r̄k)
[
pT (t− 2τr)a(r̄k)

]
+ n(t) (2)

where the transmited pulse vector p(t) in (2) is denoted by
p(t) ,

[
p0(t) p1(t) · · · pMT−1(t)

]T
, τr , D/c0, n(t)

is an uncorrelated additive noise, and x̄k is the free space path
loss which we express here as a corrected reflectance for the
k-th target as x̄k , −ω2

0/
(
16π2c20τ

2
r

)
s̄k = −1/

(
4λ2

0τ
2
r

)
s̄k .

A typical radar application forms an image from the mea-
sured data; this means recovering not only the reflectances
x̄k, but also the directions r̄k. Frequently, those directions are
obtained by beamforming techniques or by spectral DOA esti-
mation methods, just like the MUSIC or the ESPRIT [6]. On
the other hand, beamforming can be understood as probing
each direction rl at a fine grid defined by G ≥K directions
containing all targets, meaning that {rl|0≤ l≤G} ⊇ {r̄k|0 ≤
k ≤ K}. In this manner, the resulting reflectance vector will
be a sparse vector xr with K non-zero entries, corresponding
to the values of x̄r for which the directions r̄k and rl coincide.

That is, sampling the received vector, i.e. yr(n) ,
yr(2τr + nts) and defining p(n) , p(nts), we rewrite
(2) as

yr ,
[
yTr (N − 1) yTr (N − 2) · · · yTr (0)

]T
(3)

=

G−1∑
k=0

[Pa(rk)]⊗ b(rk)xk + n , (4)

where ⊗ denotes the Kronecker product,

P =
[
p(N − 1) · · · p(0)

]T
(5)

is a N×MT matrix representing the “unrolled” pulses which
are N -samples long, and n is the corresponding sampled
noise vector. Equation (3) can be equivalently written as

yr = Frxr + n

=
[
fr(r0) fr(r1) · · · fr(rG−1)

]
xr + n

(6)

where xr ,
[
x0 x1 · · · xG−1

]T
, and Fr is NMR ×G,

with each column given by
fr(rk) = [Pa(rk)]⊗ b(rk) (7)

= [P⊗ IMR
] [a(rk)⊗ b(rk)] . (8)

Note that Fr is rank deficient, with rank(Fr) ≤ MTMR.
Now, defining ck = a(rk)⊗ b(rk), we can express (6) as

yr = [P⊗ IMR
]Cxr + n (9)

where C ,
[
c0 c1 · · · cG−1

]
, represents the MTMR×

G combined manifold matrix.
Moreover, extending this model to multiple ranges, xr be-

comes a function of the range delay τr, so that the received
signal must be replaced by a convolution integral:

y(t)=

∫ G−1∑
k=0

xk(τr)b(rk)
[
pT(t− 2τr)a(rk)

]
dτr+n(t) (10)

In this case, sampling y(t) at nts, and defining τn , τ0 −
nts/2, assuming that all targets are confined to Q range bins,
we can rewrite (10) blockwise as y = Fx, where F has a
MR(N+Q−1)×QG block-Toeplitz structure, which for con-
venience we partition into its respective block columns:

F =
[
F0 F1 · · · FQ−1

]
. (11)

The vector x is composed by stacking the reflectance vectors
xr for all ranges. Each Fn has now the same structure of
Fr, whose columns are obtained by replacing the columns of
P in Eq. (8) with their respective zero-padded versions, say,
Pn , [ 0MT ×n PT 0MT ×(Q−1)−n ]

T .
Alternatively, introduce S ,

[
P0 P1 · · · PQ−1

]
⊗ IMR

and C , diag {C ··· C } = IQ ⊗C. This yields

y = SC x = S vec(CX), (12)

where X is the reshaped vector x into a size G×Q matrix.
Equation (12) also makes evident that F is rank deficient,
again, with rank(F) ≤MTMR.

Recovering the support of the vector x in this model deter-
mines the directions of arrival and the range bins containing
the desired targets. As the measurement matrix is rank de-
ficient, LS or MMSE estimation methods fail to recover the
correct solution. Usually, the target vector is sparse, suggest-
ing that we can resort to compressed sensing techniques so as
to overcome this limitation.

3. MANIFOLD MATRIX AS A COMPRESSIVE
FRAME

One traditional array geometry is the uniform linear array
(ULA), composed by M equally spaced elements, which can
be aligned with the z-axis; the coordinates of each sensor
in this case can be represented as qi =

[
0 0 id+ q0

]T
,

where d is the spacing between its elements and q0 is the po-
sition of the first array element on the z-axis. Since the direc-
tion of arrival vector depends on a single angle, say, φk, the
transmitter manifold vector (1) can be equivalently written as

a(ψk) = ejq0ψk
[
1 ejdTψk · · · ej(MT−1)dTψk

]T
, (13)

where ψk , (ω0/c0) sinφk, and dT is the spacing between
transmitting elements. Again, we have an analogous defini-
tion for the receiver manifold vector b(ψk), comprising dR
spaced elements, with first element at q̃0. If we set dT =
MRdR, then each vector ck can be viewed as an equivalent
manifold vector having M , MTMR entries, with spacing
d = dR and first element at z0 , q0 + q̃0. Such arrange-
ment is commonly known as a virtual ULA [7]. For con-
venience, we write C in (12) as C , CVD, where D =
diag

{
ejz0ψ0 ejz0ψ1 · · · ejz0ψ(G−1)

}
, and CV is anM×

G matrix of discrete Fourier bases defined by the node vector[
ejdψ0 ejdψ1 · · · ejdψG−1

]
.

Now, from (12), let
z , vec(CX) (14)
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so that y = Sz . (15)

It is known that M ×G Fourier matrices composed by dis-
tinct bases are full spark, with equal norm columns, given
that M ≤ G (see [8]). Moreover, it is also known that if
C is full spark, this condition allows us to robustly recover
the columns of X that are up to G/2-sparse, given that
we can recover z from y. Fourier matrices with equally
spaced bases in the unit circle can be shown to satisfy the
Restricted Isometry Property (RIP), and exhibit the small-
est worst-case coherence when G ≥ 2M [8]. We can take
advantage of such fact by choosing the probing directions
in (13) as ψk , ψ0 + kδ, with 0 < k < G. As a re-
sult, it can be easily verified that C = ejz0ψ0D1CFD2,
where D1 = diag

{
1 ejdψ0 · · · ej(M−1)dψ0

}
, D2 =

diag
{

1 ejz0δ · · · ejz0(G−1)δ
}

, and CF is an M ×G
partial DFT matrix with ejdδ as basis.

In most practical scenarios, when C is essencially a partial
DFT matrix, z will be quasi-sparse: if a column of the target
image X contains a wide target, its corresponding column in
Z , CX will exhibit localized elements (Fourier bandwidth
trade-off). Thus, the only situation where we would have a
dense matrix Z is when X represents a very narrow (cross-
range) and long (range) target.

Henceforth, assuming z to be sparse, it can be fully recov-
ered using compressed sensing techniques from y by design-
ing the columnns of S to have low mutual coherence, which
is defined as [9]:

µ(S) = max
i 6=j

|[S]∗i [S]j |
‖[S]i‖2‖[S]j‖2

, (16)

where [S]j denotes the j-th column of S, and ∗ the complex
transposition. Now, to compute the mutual coherence one can
take advantage of the structure in S, whose Gram matrix turns
up block-Toeplitz. In this case, each such block is given by

G(l −m) = [Pl ⊗ IMR
]
∗

[Pm ⊗ IMR
] (17)

= R(l −m)⊗ IMR
, (18)

where R(l − m) , P∗l Pm is the pulse vector autocorrela-
tion function. Assuming that all pulses have the same power,
then the diagonal elements of G(0) become constant, and we
can optimize µ(S) by minimizing all off-diagonal elements
of the Gram matrix. This can be achieved by approximating
R(0) = NIMT

and R(k) = 0, 0 < k < Q. Independent
Gaussian sequences sets, as considered in [10], allows us to
approximate these requirements in a stochastic way. As an
alternative, we make use of the so-called complementary se-
quences sets, which can be generated by optimizing the fol-
lowing block LS criterion (see Eq. (11) in [1]):

min
R(k)
‖R(0)−NI‖2F + 2

Q−1∑
k=1

‖R(k)‖2F (19)

Complementary sequences have the advantage of produc-
ing near zero correlations in a range of only Q − 1 samples,

yielding lower cross-correlations within the same range when
compared to its Gaussian sequences counterpart. It is also
possible to restrict the pulse samples to specific modulations,
such as QAM or BPSK.

Thus, the conditions on R(k) are similar to those found
for joint range and cross-range recovery in [3]. Additionally,
if C is a discrete Fourier matrix with equally spaced bases,
we have the appropriate conditions to attain the lower bound
for the mutual coherence of F derived in that paper, which
assumes direct recovery of x from y. The advantage of re-
covering range and cross-range sequentially as in (14)-(15)
is the freedom in controlling the regularization parameters in
the CS problems for each direction individually, allowing for
different levels of sparsity in z and x.

4. EFFICIENT IMPLEMENTATION

Sparse recovery in compressed sensing usually reduces to `1
norm minimization via the LASSO [11] algorithm, which, for
complex-valued problems, can be solved by quadratic con-
strained quadratic programming (QCQP). Many interior point
solvers are readily available for these problems. However,
such solvers are not very efficient, since for each grid point
to be recovered, a significant number of constraints is added,
resulting in 3QG variables. Furthermore, they do not take
full advantage of the problem structure, as they often require
the measurement matrix to be formed explicitly, and demand
a QR decomposition of the Karush-Kuhn-Tucker (KKT) sys-
tem at each step [11].

On the other hand, iterative algorithms like Approximate
Message Passing (AMP) [12] and its complex domain coun-
terpart, say, CAMP [4], are readily available for sparse recov-
ery. The complexity of those algorithms is governed by prod-
ucts with the measurement matrix, which can be implemented
very efficiently through (14) and (15). Here, we are assuming
that the complexity of a matrix-vector product is roughly the
same for the direct and transposed matrix operations.

Unlike the direct product Cx, which in general requires
GMTMRQ operations, the block diagonal products require
only Q[Glog2G+G+MTMR] operations if C is a Fourier
matrix. Recognizing the block-Toeplitz like structure in S we
can reduce the operations count for Sz from M2

RMTNQ to
(N +Q− 1)MT [MTMR + (MR + 2) log2(N +Q− 1)], by
using FFT based algorithms.

For the sake of comparison, we implement two iterative
procedures. The first one is a CAMP-based implementation
of [3], where we recover x directly from y. In this version,
each algorithm iteration requires the computation of SCx and
C∗S∗y. In the second version, we considered the two-step
procedure aforementioned, first recovering z from y (which
makes use of products like Sz and S∗y). Having recovered z,
we reshape it and use CAMP for each column of Z, say, [Z]i,
so as to retrieve the columns of X. In this step, the products
used are mainly C[X]i and C∗[Z]i.
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Note that the two algorithm versions will exhibit the same
worst case complexity, if we consider that CAMP will always
require the same maximum number of iterations to converge.
In practice, the second version is marginally faster, as CAMP
converges in a smaller number of iterations in the second step,
where the problems are smaller.

5. EXPERIMENTS

Figure 2 shows the exact target image considered in all ex-
periments. The simulated system employs MT = 7 transmit-
ters and MR = 10 receivers, in a virtual ULA configuration.
The transmitted (complementary) sequences were generated
by the WeCAN algorithm proposed in [1] of length N = 256
and a zero cross-correlation zone covering Q = 48 samples.

Fig. 2. True target image.
All experiments were performed under 20 dB and 5 dB

signal-to-noise-ratio (SNR). As a basis of comparison, Fig. 3
shows the recovery using matched filters for LS beamform-
ing, traditionally used for imaging systems, similar to the ex-
periment in [1]. Although the main part of the target is re-
covered, the detached piece with lower reflection coefficient
is obscured by the interference pattern, even in high SNR.

(a)

(b)
Fig. 3. LS recovery at (a) 20 dB SNR and (b) 5 dB SNR.

Figures 4 (a) and (b) show the result for recovering the im-
age in a single CAMP step, as in [3]. The use of compressed
sensing techniques for joint range and cross-range imaging
greatly improves the reconstruction, even in low SNR.

(a)

(b)
Fig. 4. Joint range and cross-range recovery [3] at (a) 20 dB
SNR and (b) 5 dB SNR.

The second algorithm, which forms the image in two
steps, is shown in Figs. 5 (a) and (b). The resolved image is
very similar to the single step version, but the detached ele-
ment is more clearly identified in the low SNR scenario. Also,
the noise speckles around the main target are less prominent,
due to different regularization levels applied in each step.

The last experiment is an FDTD simulated scene contain-
ing two small solid boxes with different uniform dielectric
constants and a small electrical conductivity, and is intended
to verify the algorithm behavior under some more realistic
conditions such as non-ideal antenna patterns and multiple
scattered signals. Figure 6 shows the result, again for three
different recovery algorithms. For this simulation, we make
use of the OpenEMS package [13], with MT = 5 transmit-
ting elements and MR = 11 receiving antennas. Since elec-
tromagnetic waves are reflected solely at media interfaces,
only the borders within the critical angle become visible, as it
would happen to a glass cube. The higher reflectances corre-
spond to the box corners, and the apparent angular distortion
seen is an effect of the non-cartesian mapping of the axes [The
expected recovered shape of the boxes is shown in the inser-
tion at the bottom of Fig. 6 (a)-(c)]. Again, the two-step algo-
rithm results in the best image. In between the boxes it ap-
pears the effect of re-scattered fields, not taken into account
by the Born approximation used in first place.
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(a)

(b)

Fig. 5. Two-step range and cross-range recovery at (a) 20 dB
SNR and (b) 5 dB SNR.

6. CONCLUDING REMARKS

In this paper, we have proposed efficient algorithms for im-
age reconstruction in a full 3D compressed sensing MIMO
radar scenario. Under an additive noise model, the two-step
version allows for better control on the regularization param-
eters, improving the reconstruction. The FDTD simulation
corroborates with the results, showing an adequate recovery
even with non-ideal antennas and multi-scattered signals.
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