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ABSTRACT 

 

This paper proposes a new adaptation algorithm named 

Normalized Recursive Least Adaptive Threshold Nonlinear 

Errors (NRLATNE) algorithm for complex-domain adaptive 

filters which makes the filters fast convergent for correlated 

filter inputs and robust against two types of impulse noise: 

one is found in additive observation noise and another at 

filter input. Analysis of the proposed NRLATNE algorithm is 

fully developed to theoretically calculate filter convergence 

behavior. Through experiments with some examples, we 

demonstrate the effectiveness of the proposed algorithm in 

improving the filter performance. Good agreement is 

observed between simulated and theoretically calculated 

filter convergence that shows the validity of the analysis. 

 

Index Terms—Adaptive filter, recursive least squares, 

impulse noise, adaptive threshold, nonlinear error, 

normalization 

 

1. INTRODUCTION 

 

Among many adaptation algorithms for adaptive filters, the 

LMS or NLMS algorithm is most widely applied to practical 

communication systems and most intensively studied [1, 2]. 

Although the LMS or NLMS algorithm attracts many 

implementers for its excellent performance, a serious 

drawback is its vulnerability to impulse noise [3, 4]. 

     Two types of impulse noise are found in adaptive filtering 

systems: one in additive observation noise and another at 

filter input. The latter type of impulse noise is often found in 

active noise cancellers. One of the solutions for robust 

filtering in the presence of impulsive observation noise is use 

of the Sign Algorithm (SA) in the real-number domain [5] or 

the Least Mean Modulus (LMM) algorithm in the complex-

number domain [6]. However, the filter convergence with 

these algorithms is much slower than the LMS algorithm. 

     The author proposed Adaptive Threshold Nonlinear 

Algorithm [7] to preserve the fast convergence speed of the 

LMS algorithm while improving the robustness against the 

impulsive observation noise. To make the filter robust 

against large variations of the filter input, we introduce a 

normalizing factor as in the NLMS algorithm [8]. 

 

     When the filter input is correlated (or colored), the filter 

convergence becomes considerably slower. To solve this 

problem, recursive least squares estimation of the inverse 

covariance matrix of the filter input is combined. A typical 

example is the well-known Recursive Least Squares (or 

Square Errors) (RLS) algorithm [2]. If this recursive 

estimation is combined with the LMM algorithm, we derive 

Recursive Least Moduli (RLM) algorithm which successfully 

makes the filter convergence significantly faster for a 

strongly correlated filter input and, at the same time, realizes 

high robustness against both types of impulsive noise [9]. 

     In this paper, with a different approach, combining the 

above stated methods, we derive an adaptation algorithm 

named Normalized Recursive Least Adaptive Threshold 

Nonlinear Errors (NRLATNE) algorithm. Theoretical 

analysis of the proposed NRLATNE algorithm is developed, 

and experiments with some examples are carried out to 

examine the performance of the NRLATNE algorithm and to 

compare simulated and theoretically calculated filter 

convergence behavior. 

 

2. IMPULSE NOISE MODELS 

 

2.1. Impulsive Observation Noise 

 

Impulse noise found in the additive observation noise is often 

modeled as Contaminated Gaussian Noise (CGN) that is 

mathematically a combination of two independent Gaussian 

noise sources [10], i.e., Gaussian noise ν(0)(n) with variance 

σ2
ν
(0) and probability of occurrence pν

(0), and ν(1)(n) with 

σ2
ν
(1) and pν

(1), where n is the time instant. Note that pν
(0) + 

pν
(1) = 1 holds. Usually, σ2

ν
(1) >> σ2

ν
(0) and pν

(1) < pν
(0). The 

variance of CGN is given by σ2
ν = pν

(0)σ2
ν
(0) + pν

(1)σ2
ν
(1). For 

“pure” Gaussian noise, σ2
ν = σ2

ν
(0) and pν

(1) = 0. 

 

2.2. Impulse Noise at Filter Input [11] 

 

A “noisy” filter input b(n) with impulse noise added to the 

reference input a(n) is given by b(n) = a(n) + τ(n) νa(n), 

where τ(n) is an independent Bernoulli random variable 

taking 1 with probability pνa and 0 with 1 – pνa. The impulse 

noise νa(n) itself is assumed to be a White & Gaussian 

process with variance σ2
νa independent of a(n). 
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3. NORMALIZED RECURSIVE LEAST  

 ADAPTIVE THRESHOLD NONLINEAR ERRORS 

ALGORITHM 

 

3.1. Least Mean Adaptive Threshold Nonlinear Error 

Algorithm 

 

In a complex-domain FIR-type adaptive filter, let the cost 

function of the error e(n) be defined by  

Le(n) = F[| e(n) |; A(n)],  

where | e(n) | is the modulus of the complex-valued error and 

A(n) is a threshold. The function F( · ; · ) is given by  

                                           | e |2/2   for | e | ≤ A  

                      F(| e |; A) =  

                                             A2/2    for | e | > A. 

Defining a nonlinear function of error by  

                    F(| e |; A) = | e |–1 dF(| e |; A) / d| e |  

                                              1        for | e | ≤ A  

                                     =                                                (1) 

                                              0        for | e | > A,  

we derive an update equation for the tap weight vector c(n):  

                   c(n+1) = c(n) + αc  f[e*(n); A(n)] a(n),          (2) 

where f(e; A) = F(| e |; A) e, a(n) = [a(n) ∙∙∙ a(n–k) ∙∙∙ a(n–

N+1)]T is the filter reference input vector, N is the number of 

tap weights, αc is the step size and ( · )* denotes complex 

conjugate. The adaptive threshold A(n) is calculated as  

               A(n+1) = ( 1 – ρA ) A(n) + ρA MA | e(n) |        (3) 

with MA being a multiplier and ρA a leakage factor. 

     The above adaptation algorithm is named Least Mean 

Adaptive Threshold Nonlinear Error (LMATNE) algorithm. 

The LMATNE algorithm makes adaptive filters converge as 

fast as the LMS algorithm and robust against impulsive 

observation noise [7]. Note that the threshold is not fixed but 

adapted according to the average error magnitude. 

 

3.2. Normalized Recursive Least Adaptive Threshold 

Nonlinear Errors Algorithm 

 

First, we combine the LMATNE algorithm with a 

normalizing factor || a(n) ||2 as used in the NLMS algorithm 

[8]. Next, combining the NLMATNE algorithm with the 

recursive least squares estimation of the inverse covariance 

matrix as used in the RLS algorithm, we derive an adaptation 

algorithm named Normalized Recursive Least Adaptive 

Threshold Nonlinear Errors (NRLATNE) algorithm whose 

tap weight update equation is given by  

c(n+1) = c(n) + αc P(n) f[e*(n); A(n)]  

· a(n) / || a(n) ||2,                       (4) 

in which usually αc = 1 and the estimate of the inverse 

covariance matrix P(n) is calculated in two ways. 

           Method <A>:  P(n+1) = Q–1(n+1)                        (5) 

                                 Q(n+1) = λ Q(n)  

                + F[| e(n) |; A(n)] a(n) aH(n) / || a(n) ||2           (6) 

or  

 

 
Fig. 1.  Schematic diagram for NRLATNE algorithm. 

 

           Method <B>: P(n+1) = λ–1 { P(n)  

        – F[| e(n) |; A(n)] P(n) a(n) aH(n) P(n) / || a(n) ||2  

     / {λ + F[| e(n) |; A(n)] aH(n) P(n) a(n) / || a(n) ||2} },  (7) 

where λ is the forgetting factor. Method <B> is derived from 

Method <A> by applying the famous Matrix Inversion 

Lemma. Although the update equation for Method <A> is 

simpler, the computational complexity is much lower for 

Method <B>. Thus, we use Method <B> for simulations. 

     The NRLATNE algorithm is expected to make adaptive 

filters fast convergent for correlated filter inputs and robust 

against both types of impulse noise stated in Section 2. Fig. 1 

is a schematic diagram for the NRLATNE algorithm. 

 

4. ANALYSIS 

 

In this section, for ease of analysis, we assume absence of 

impulse noise at the filter input. In the experiments in the 

next section, both types of impulse noise are considered. 

 

4.1. Assumptions 

 

For the analysis in this section, we make the following 

assumptions. 

    A1: The number of tap weights N is large, say N > 20. 

    A2: The filter reference input a(n) is a colored Gaussian 

process with a covariance matrix Ra = E[a(n)aH(n)]/2 and a 

variance σ2
a = E[| a(n) |2]/2. 

    A3: Two types of impulse noise are modeled in Section 2. 

    A4: The filter input a(n) and the tap weights c(n) are 

mutually independent (Independence Assumption). 

    A5: The estimate P(n) is independent of e(n) and a(n). 

    A6: The error e(n) given a(n) is Gaussian distributed [5]. 

 

4.2. Difference Equations for Tap Weight Misalignment 

 

Define a tap weight misalignment vector θ(n) = h – c(n) 

where h is the response vector of the unknown stationary 

system. For θ(n), we have an update equation  

             θ(n+1) = θ(n) – αc P(n) F[| e(n) |; A(n)] e*(n)  

                                     · a(n) / || a(n) ||2.                         (8) 
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From (8), a set of difference equations for the mean vector 

m(n) = E[θ(n)] and the second-order moment matrix K(n) = 

E[θ(n) θH(n)] is derived as  

                         m(n+1) = m(n) – αc p(n)                        (9) 

and    K(n+1) = K(n)  – αc [V(n) + VH(n)] + α2
c T(n),   (10) 

where p(n) = E[P(n)] W(n) m(n), V(n) = E[P(n)] W(n) 

K(n) and T(n)  E[P(n)] S(n) E[P(n)]. 

     First, let us calculate W(n). Recognizing that | e(n) | is 

subject to the Rayleigh distribution [12], we calculate  

           E{F[| e(n) |; A(n)] e*(n) a(n) / || a(n) ||2│θ(n)}  

  ∫0
 r(n) (t2/2)exp(–t2/2)tdt E[a(n)aH(n)/|| a(n) ||2] θ(n)  

                  H[r(n)] E[a(n)aH(n)/|| a(n) ||2] θ(n),  

whence  

                            W(n) = H[r(n)] Wa                           (11) 

with Wa = E[a(n)aH(n)/|| a(n) ||2] and H(r) = 1 – (1+r2/2) 

exp(–r2/2). The error e(n) = (n) + ν(n), and (n) = θH(n) 

a(n) is the excess error, ν(n) is the additive observation noise, 

r(n) = E[A(n)] / σe(n) is the normalized threshold, σ2
e(n) = 

ε(n) + σ2
ν is the error variance, and we define Excess Mean 

Square Error (EMSE) by ε(n) = E[|(n)|2]/2 = tr[RaK(n)]. 

     Next, we calculate for N>>1  

    S(n) = E{F[| e(n) |; A(n)] | e(n) |2 a(n)aH(n)/|| a(n) ||4} 

          ∫0
 r(n) t2exp(–t2/2)tdt σ2

e(n) E[a(n)aH(n)/|| a(n) ||4]  

                            2H[r(n)] σ2
e(n) Sa                           (12) 

with Sa = E[a(n)aH(n)/|| a(n) ||4]. 

     For N>>1, we can approximate  

           Wa  E[a(n)aH(n)]/E[|| a(n) ||2]  Ra / (σ2
aN)    (13) 

and                        Sa  Ra / [2(σ2
aN)2].                       (14) 

     For the CGN, we calculate an average for σ2
ν
(i), i = 0, 1. 

 

4.3. Difference Equation for Adaptive Threshold 

 

For the adaptive threshold, the difference equation is:   

  E[A(n+1)] = ( 1 – ρA ) E[A(n)] + ρA MA (π/2)1/2 σe(n).  (15) 

 

4.4. Analysis of Method <A> for Calculation of E[P(n+1)] 

 

For Method <A>, we derive, from (5) and (6)  

          E[P(n+1)] = E[Q–1(n+1)]  E[Q(n+1)]–1       (16) 

and                 E[Q(n+1)] = λE[Q(n)] + ΞQ(n),              (17) 

where  

        ΞQ(n)  E{F[| e(n) |; A(n)]} E[a(n)aH(n)/|| a(n) ||2]  

                                   G[r(n)] Wa                               (18) 

with G(r) = ∫0
 rexp(–t2/2)tdt = 1 – exp(–r2/2). 

 

4.5. Analysis of Method <B> for Calculation of E[P(n+1)] 

 

For Method <B>, we derive, from (7), a difference equation  

            E[P(n+1)] = λ–1E[P(n)]{I – ФP(n) E[P(n)]},     (19) 

where  

                      ФP(n) = E{ a(n)aH(n)/|| a(n) ||2   

             / {λ / F[| e(n) |; A(n)] + aH(n)P(n)a(n)/|| a(n) ||2} }  

                ∫0
 ∞ dβ E{exp{–βλ/F[| e(n) |; A(n)]}}  

     · E{a(n)aH(n)/|| a(n) ||2 exp[–βaH(n)P(n)a(n)/|| a(n) ||2]}. 

Since exp{–βλ/F[| e(n) |; A(n)]} = exp(–βλ) for | e(n) | ≤ 

A(n) and = 0 for | e(n) | > A(n), we obtain for N>>1  

            ФP(n)  ∫0
 ∞ dβ exp(–βλ) ∫0

 r(n)exp(–t2/2)tdt  

                      · Wa exp{–βtr{Wa E[P(n)]}}  

                G[r(n)] Wa / { λ + tr{Wa E[P(n)]}}  

                    ΞQ(n) / { λ + tr{Wa E[P(n)]}}.               (20) 

 

4.6. Initial Conditions 

 

For c(0) = 0, we have m(0) = h and K(0) = h hH.  A(0) = 

(π/2)1/2 MA
 σe(0) and  P(0) = P0 I with  

      P0 = tr[W(0)K(0)] / {αc tr[S(0)]}  

            1 / αc  

that minimizes ε(1). 

 

4.7. Steady-State Solution 

 

As n → ∞, E[A(∞)] = MA
 (π/2)1/2σe(∞) and r(∞) = (π/2)1/2 

MA. Then, W(∞)  H∞ Wa and S(∞)  2 H∞ σ
2

e(∞) Sa with 

H∞ = H[(π/2)1/2 MA]. 

     For Method <A>,  

                E[P(∞)] = λc ΞQ
–1(∞)  λc G∞

–1Wa
–1             (21) 

 with G∞ = G[(π/2)1/2 MA] and λc = 1 – λ. 

     For Method <B>, we find  

  E[P(∞)] = λc ФP
–1(∞)  λc {λ+tr{WaE[P(∞)]}G∞

–1Wa
–1  

from which we solve tr{WaE[P(∞)]}  λc / (1–λc N G∞
–1) · 

λc N G∞
–1, hence  

                       E[P(∞)]  λc ρP G∞
–1Wa

–1              (22) 

with ρP = λc/(1–λcNG∞
–1) >1. For Method <A>, clearly ρP =1. 

     Then we derive, with ρP ≥ 1,  

         K(∞) = (αc/2) W–1(∞) S(∞) E[P(∞)]  

                      αc λc ρP G∞
–1σ2

e(∞)Wa
–1 Sa

 Wa
–1  

and the steady-state EMSE for N>>1  

                 ε(n)  δ / (1 – δ) · σ2
ν                                    (23) 

with  

                  δ = αc λc N ρP G∞
–1 /2.                                   (24) 

 

5. EXPERIMENTS 

 

In this section, experiments are carried out for the proposed 

NRLATNE algorithm. In the experiments, the simulation 

result is plotted as an ensemble average of the squared 

excess error <|(n)|2>/2 over 1000 Monte Carlo simulations 

of filter convergence. 

     For the experiments, two examples are prepared as given 

below, where N = 32, the filter input is an AR1 Gaussian 

process with σ2
a = 1 (0 dB) and the regression coefficient η 

= 0.9. For the unknown system, h = [0.01–j0.05 0.758–j0.02 

0.05+j0.05 –0.5+j0.1 –0.25+j0.05 h5 ··· h31]
T with hk = 0.8 

hk–1 for k = 5 to 31 (|| h ||2  1). For the adaptive threshold, 

MA = 1.5 and ρA = 2–11. 

 

       Example #1  “pure” Gaussian noise: σ2
ν= 0.01 (–20 dB)  

                            no impulse noise at filter input  
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                            for NRLATNE: αc = 1, λc = 2–11  

           for NLMATNE: αc = 2–6  

                            analysis of Methods <A> and <B> 

 

       Example #2   Case 1: “pure” Gaussian noise  σ2
ν= 0.01  

                                         no impulse noise at filter input  

                             Case 2: CGN  σ2
ν
(0) = 0.01;  pν

(0) = 0.9  

                                                   σ2
ν
(1) = 10    ;  pν

(1) = 0.1  

                                         no impulse noise at filter input  

                             Case 3: “pure” Gaussian noise  σ2
ν= 0.01 

                                         impulse noise at filter input  

                                                   σ2
νa = 1000; pνa = 0.1  

                             Case 4: CGN as in Case 2  

                                         impulse noise at filter input  

                                                  as in Case 3  

                        for NRLATNE: αc = 1, λc = 2–11  

                             analysis of Method <B> 

 

     Fig. 2 shows results for Example #1, where simulated and 

theoretically calculated filter convergence curves for the 

NRLATNE algorithm in the absence of impulse noise are 

plotted. For the estimate P(n), analyses of Methods <A> and 

<B> are compared. We see slightly better accuracy of 

Method <B> than Method <A>. In the figure, filter 

convergence for the NLMATNE algorithm is also shown. 

We observe much faster convergence for the NRLATNE 

algorithm than for the NLMATNE algorithm, which 

demonstrates the effectiveness of the recursive estimation of 

the inverse covariance matrix. 

     For Example #2, filter convergence for the NRLATNE 

algorithm in the presence of two types of impulse noise is 

shown in Fig. 3. Case 2 is for impulsive observation noise, 

Case 3 for impulse noise at filter input, and Case 4 for both 

types of impulse noise. Only simulation results are given for 

Cases 3 and 4. We observe high robustness of the algorithm 

against both types of impulse noise. 

 

6. CONCLUSION 

 

In this paper, we have proposed an adaptation algorithm for 

complex-domain adaptive filters named Normalized 

Recursive Least Adaptive Threshold Nonlinear Errors 

(NRLATNE) algorithm, combining the LMATNE algorithm 

with a normalizing factor and a recursively estimated inverse 

covariance matrix of the filter input. 

     Through analysis and experiments, we have demonstrated 

that the algorithm makes adaptive filters fast convergent for 

correlated filter inputs and highly robust against the two 

types of impulse noise found in adaptive filtering systems. 

     Simulated and theoretically calculated filter convergence 

curves are in good agreement that shows the validity and 

accuracy of the analysis for practical use. 

     Analysis of the NRLATNE algorithm in the presence of 

both types of impulse noise is left as a future work. 

 

 

 

 

 
Fig. 2. Adaptive filter convergence curves. 

(Example #1, NRLATNE and NLMATNE,  

                                       Analysis of Methods <A> and <B>) 

 

 

 

 
Fig. 3. Adaptive filter convergence curves. 

                       (Example #2, NRLATNE, Cases 1 to 4). 
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