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ABSTRACT

We propose to use enhanced FO-trajectories, which are ex-
tracted using shift-autocorrelation (shift-ACF), for multiple
speaker detection in audio monitoring scenarios. After in-
troducing spectral shift-ACF features, their performance in
multiple FO-extraction in the presence of different noise types
is estimated for synthetic signal scenarios. Afterwards, a
novel method for FO-supertrajectory extraction is proposed
and evaluated for multiple speaker detection in the presence
of background noises that typically occur in audio moni-
toring. It turns out that due to their improved sharpness in
representing harmonic components, spectral shift-ACF fea-
tures outperform classical features in many cases.

Index Terms— Multiple Speaker Detection, Audio Mon-
itoring, FO-Trajectories, Shift-ACF

1. INTRODUCTION

The detection of speaker activity is an important task in au-
dio monitoring and acoustic scene analysis. This task can be
particularly challenging due to various types of background
noises and secondary signals present in a recorded signal. In
this paper, we contribute to the potentially even more complex
task of detecting the activity of multiple concurrently active
speakers in a one-channel signal. More precisely, we are in-
terested in estimating a list of all, possibly overlapping speech
segments — each spoken by a single speaker — contained in a
given signal. Using an additional speaker assignment, a sub-
sequent application could be speaker diarization.

To separate two concurrently active speakers, a time-
domain cancellation model was proposed in [1] two decades
ago. In that work, while focusing on clean speech, harmonic
properties and measurement of fundamental frequencies (FO)
are used. Estimation of the number of speakers present in a
segment of clean speech — which can be seen as a classifi-
cation problem — was investigated based on the modulation
spectrum [2], MFCC-feature-based GMM/HMMs and spec-
tral peak extraction with subsequent clustering [3]. To incor-
porate temporal information, pitch-trajectories were used to
model FO+harmonics in multiple speaker estimation [4] and
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extraction of polyphonic notes in music analysis [5].

While the previously reported approaches majorly deal
with clean speech scenarios, to the best of our knowledge,
only limited results dealing with monitoring scenarios are
available. Based on the observation that tonal speech com-
ponents are more robust to common noises and distortions
than non-tonal ones, this paper aims at improving multiple
speaker detection in noisy signals based on robustly extracted
FO-trajectories. In particular, we propose to use enhanced
FO-trajectories, which are obtained from the signal using the
recently proposed shift-ACF [6]. In [7], it was shown that
shift-ACF improves performance of FO-estimation compared
to classical approaches particularly for noisy scenarios. A
more detailed analysis on detection of sequences of temporal
burst pulses [8] shows that shift-ACF is particularly robust
against impulsive noises. While FO-estimation can be inter-
preted as a frequency-domain dual of the latter scenario, the
time-varying structure of FO-trajectories makes it a somewhat
different task. In this paper, we show that despite this differ-
ence FO-trajectories can be estimated robustly in the presence
of mixtures of strong Gaussian and sinusoidal noises.

The paper is organized as follows. Sect. 2 briefly sum-
marizes shift-ACF, spectral shift-ACF, and classical feature
extractors used in this paper. The subsequent Sect. 3 presents
our baseline experiment where performance of shift-ACF fea-
tures for multiple speaker detection is systematically com-
pared to classical features. In Sect. 4, a strategy for multiple
speaker detection is proposed which is evaluated in Sect. 5.

2. SPECTRAL FEATURE EXTRACTION

The use of spectral features is motivated by observing that
the fundamental frequency of voiced speech results in a
high energy region within the short time spectrum x around
a frequency FO as well as at the harmonic frequencies
2-FO, 3-F0, .... Hence classical autocorrelation defined by
ACF[z](s) := > ,cpx(k) - x(k —s) as a typical mecha-
nism for detecting repeating signal components is expected
to show a local maximum at FO. As FO is usually changing
with time depending on speech prosody, we compute the
shift-ACF for successive time frames of a speech signal y. To
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Fig. 1. Spectrogram of overlapping synthetic FO-trajectories
with five harmonics each (1) as well as features obtained by
column-wise classical ACF (2), a type 100 spectral shift ACF
(3), and ground truth FO-trajectories (4).

this end, we compute the spectrogram SG[y|, where column
7, SGly] .,j» 1s obtained as discrete Fourier transform of a win-
dowed version (125 ms Hann window, step size 16ms) of the
j-th time frame (y;s,...,yjs+n—1) of length N extracted
from y using step size S. Then the spectral ACF is defined as
SpACF(y](s, j) := ACF[SGly]. ;|(s), i.e., by computing the
ACEF for all of the spectrogram columns individually.

Fig. 1 (1) shows the spectrogram of a one second length
signal y containing a mix of two synthetic speakers as de-
scribed in Sect. 3. In (2), SpACF[y] is shown, indicating the
FOs of both speakers which are in the regions of 90-110 Hz
(speaker 1) and 170-200 Hz (speaker 2). As documented by
the ground truth (4) showing the true FO as 7 FO-trajectories,
the ACF in (2) does not properly represent all of those trajec-
tories, which is due to closeness and partial overlap of har-
monics. Moreover, the ACF contains considerable harmonic
components that may complicate estimation of the true FO.

To overcome ACF-drawbacks, in [7] it was proposed
to exploit multiple repetitions, i.e., that FO usually has
more than one harmonic component (in Fig. 1 (1) all of
the shown FO-trajectories have four harmonics). This is
achieved by first introducing both a rype 0 shift-product op-
erator OY := x(k) - z(k — s) and a fype I shift-minimum
operator O} := min(|x(k)|, |z(k — s)|). Intuitively the shift-
product, which is part of the above ACF-definition, can be
used to amplify repeating components in & whereas the shift
minimum can be used to suppress non-repeating components
in z. Iterating those operators by O% := Q! o --- 0 Ol with
a length n =: [¢| shift ype t = (t1,...,t,) € {0,1}"™ may
then be used to enhance multiply repeating components. If
we expect . + 1-fold repetitions, using operators of length
< n turns out to be reasonable. The shift-ACF of type t is then
defined as ACF'[z](s) = 3, ., OL[z](k). Note that ACF’
is the classical ACF. As remarked in [6], multiply repeated
components in x at lag s show up as peaks in shift-ACF’(s)
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Fig. 2. (1) Five second sample for base mix of three overlap-
ping synthetic speakers plus Gaussian noise at 0 dB and two
random frequency-variant sinusoidal interferers. (2) Piece-
wise FO trajectories used to generate synthetic speech in (1).

where the peak sharpness improves as a function of |t|.

Analogously to the case of ACF, now SpACF'[y](s, j) :=
ACF'[SG[y]. ;](s) defines the spectral shift-ACF of type t. In
our example, Fig. 1 (3) shows SpACF!'®° [y], where an im-
proved sharpness of FO-trajectories and a better separation of
both speakers as compared to the ACF in (2) can be observed.
In the subsequent experiments, we will use the column-wise
Fourier transform and the column-wise Cepstrum (both w.r.t.
the columns of SG[y]) as two additional, classical, (2D-) rep-
resentations for FO-trajectory extraction.

3. BASELINE FEATURE EVALUATION

Prior to extracting FO-trajectories, we investigate how the
different 2D features are able to represent FO-trajectories in
a baseline experiment using synthetic speech. This allows us
to both precisely control the ground truth of FO-trajectories
and to decouple feature analysis from the analysis of the
trajectory extraction method. In our experiments, we use
SpACE® = SpACF, SpACF”, SpACF!% column-wise
Fourier, and Cepstrum as 2D feature-representations. We
also evaluated other shift-types up to length four, which in
our test cases did not further improve performance.

To generate a synthetic speaker signal, we use a simplis-
tic model of voiced speech. Each such signal is generated
as a sequence of tonal components each consisting of a base
FO-frequency and a number of harmonics. Component du-
rations (between 120 and 400 ms) and pauses (between 80
and 150 ms) are randomly selected. To mimic prosody, FO
is allowed to vary by a certain amount (30 Hz in our tests)
within a component. Variation is obtained by modulating FO
with a randomly generated spline function. Harmonics have
energies which are linearly decaying to 25% of the FO. We
critically remark that this is only a coarse speech model not
including other parameters such as formant-based weighting
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Fig. 3. ROC curve for base mix of three synthetic speakers
plus Gaussian noise at 0 dB and 5 sinusoidal interferers.
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Fig. 4. Performance shown as distance to Dop¢ for added
Gaussian noise (-12 to +6 dB) and three speaker base mix.

of the harmonics’ energies or non-tonal components.

Based on M synthetic speaker signals s;, a speech mix
is then obtained as a weighted sum s := ) .", «;s;, where
0 < o; < 1. To simulate background noise, Gaussian noise is
added at a desired SNR. Structured interfering noise is mod-
eled by adding a number of randomly modulated sinusoidals.
As our analysis method works on short-time spectra, such in-
terferers could be expected to have a strong impact on per-
formance. Moreover, they model several types of realistic
sounds such as produced by animals, sirens, or motors. Fig. 2
(1) shows a 5 second mix of three synthetic speakers (base
mix) with base FOs at 100, 140, and 175 Hz, weighted using
(a1, a2, a3) = (1,0.8,0.5). Each tonal component consists
of five harmonics only, which is realistic in several monitoring
scenarios. Gaussian noise was added at 0 dB as well as two
sinusoidal interferers, each having an energy equivalent to 5
times the FO-energy of the strongest speaker. For our evalu-
ations, the underlying FO-trajectories, Fig. 2 (2), are used to
generate ground truth FO-regions as illustrated in the intro-
ductory example, see Fig. 1 (4).
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Fig. 5. Performance shown as distance to Dopt for two syn-
thetic speakers with base FO frequencies of 100 and 170 Hz,
and relative strength 0.1 < o < 1 of speaker two.

In evaluating our (normalized) 2D feature-representations,
we consider feature energy above a certain detection thresh-
old. All positions with values above this threshold are counted
as detections. Detections falling into ground truth FO regions
are correct detections, all others are counted as false alarms.
The detection threshold is varied to obtain ROC-curves as
depicted in Fig. 3, showing false positives (FP) rate versus
detection, or true positive (TP), rate. Optimum performance
is obtained at (TP,FP) = (1,0) =:Dgpt. Fig. 3 shows ROC-
curves for the above base-mix of three speakers. We used
an average over 50 signals of 5 seconds length each. Each
signal contained Gaussian noise at 0 dB and five interfering
sinusoids between 100 and 1000 Hz randomly choosen for
each signal. Clearly, shift-ACF outperforms classical ACF
and classical feature types. Robustness against various energy
levels of Gaussian background noise is illustrated in Fig. 4.
Each value on each curve is obtained from a ROC-evaluation
and represents the mimimum distance of the respective ROC-
curve from Dopt, i.e., small values are better than larger ones.
We remark that we also estimated the common measure of
equal error rate that yields very similar results. From Fig. 4
we see that type 100 shift-ACF performs best down to about
-2dB, while for very low SNRs type 00 shift-ACF is better.
The latter is due to the initial shift-minimum step in the type
100 operator suppressing some of the lower-energy harmon-
ics which are close to the noise. Opposed to this, in the type
00 operator only harmonicity-enhancing shift-product steps
are used. Note also the slightly decreasing performance for
some of the features towards higher SNRs. This happens be-
cause feature energy that is widely distributed around the true
FO exceeds the noise floor in those cases and is thus counted
as a (false) detection. In this sense, our evaluation favors
concentrated feature energy. Feature performance for sys-
tematically varied speaker energies was investigated for a two
speaker mix s = 51 +asg with varying 0.1 < o < 1 and base
FOs of 100 and 170 Hz at an SNR of 6 dB. While confirming
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Fig. 6. Top to bottom: Three-step process of grouping FO-
trajectories to FO-supertrajectories (dashed lines).

superiority of shift-ACF features, the results shown in Fig. 5
indicate that there is a significant reduction in performance
starting at about av = 0.45 of speaker 2 energy.

4. FO-SUPERTRAJECTORY EXTRACTION

While the baseline experiment presented in Sect. 3 shows
the features’ potential by investigating feature concentra-
tion around FO, this section proposes to use estimated FO-
trajectories for multiple speaker detection.

To extract basic FO-trajectories from a signal segment
y, we process the spectral shift-ACF (e.g., Fig. 1 (3)). In
particular, we first perform a column-wise peak picking on
SpACF'[y]. This is followed by concatenating adjacent peaks
to paths using an optimization approach, see [7]. This re-
sults in short FO-trajectories as shown in Fig. 6 (top). In
a subsequent step, we attempt to group FO-trajectories of
different speakers. To this end, we assume that (1) tempo-
rally overlapping FO-trajectories belong to different speakers
and (2) non-overlapping FO-trajectories which are close in
time and frequency are likely to belong to the same speaker.
Based on those assumptions, we extract FO-supertrajectories
by iterating a sequence of grouping steps. Initializing FO-
supertrajectories with all of the basic FO-trajectories, each
subsequent iteration groups temporally successive (w.r.t. a
threshold) FO-supertrajectories S7 and S2 where the fre-
quency difference of either the closest points (end-point of S
and start-point of S2) or the median FOs is below a threshold.
In each iteration, both temporal and frequency thresholds
are increased, thus successively allowing longer “gaps” to
be filled. Fig. 6 shows three steps of this iteration where
all new groupings are indicated by dashed lines. Resulting
supertrajectories are represented by different colors. In the
example, there are two supertrajectories corresponding to
two speakers. As a result of this method, regions of speech
activity can finally be derived from start- and end-points of
the FO-supertrajectories. In our experiments, short supertra-
jectories of a duration below 0.5 seconds, were discarded in
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Fig. 7. Accuracy in detecting two speakers mixed at different
weightings for combinations mf, ff, and mm.

the end (black trajectories in Fig. 6).

5. EVALUATION

The performance of our speaker detection method was eval-
uated using a set of speech signals which were created under
controlled conditions using spontaneous male (m) and female
(f) speech from the German Kiel corpus’.

In a first experiment, we evaluate detection of two speak-
ers s1, S mixed using different intensities. Test signals for
the three speaker combinations mf (45 minutes), ff (35 min.),
and mm (35 min.) were generated using 4-second blocks
each containing a weighted speech signal as; + (1 — «@)s9
for 0.1 < a < 0.9. As screening experiments indicated that
speakers with base FO-frequencies closer than about 30 Hz are
difficult to distinguish, we chose the speech mixes such that
median FO of both speakers in a 4-second block exceeds 30
Hz. Fig. 7 shows the accuracy in detecting the two speakers
for varying values of « using a type 100 spectral shift-ACF.

In a second experiment, we tested the robustness against
different noise types, in particular white Gaussian noise,
street noise, lawnmower sounds, and thunderstorm record-
ings, which are added to speech signals at specific SNRs. The
dataset consists of 45 minutes containing one speaker only
and 45 minutes with two simultaneous speakers of equal en-
ergies. As noise-only signals, we used 18 minutes of street-, 4
minutes lawnmower- and 2 minutes thunderstorm-noise. Us-
ing more data of the — potentially more problematic — street
noise can be motivated as, for many realistic scenarios, street
noise is more common. In our tests we added these noises at
SNRs of 0, 5, 10, 15, and 20 dB.

For SNRs of 0 dB and 15 dB, Table 1 shows confusion
matrices for classifying the number of speakers based on our
approach. The table shows results for street, lawnmower and
thunderstorm background noise. Gaussian noise as well as the
other SNR cases lead to qualitatively similar results and are

Imttp://www.ipds.uni-kiel.de/forschung/
kielcorpus.en.html
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Table 1. Confusion matrices: ground truth (rows; 0-2 speak-
ers) vs number of speakers returned by algorithm (columns;
0-3 speakers) shown for added backgrounds of street noise at
SNRs of (a) 0 dB and (b) 15 dB, lawnmower noise at SNRs
of (¢) 0 dB and (d) 15 dB, thunderstorm noise at SNRs of (e)
0 dB and (f) 15 dB.

not shown here because of space restrictions. The results indi-
cate that no false positives were returned for recordings with
background noise only. In particular, even in cases where tra-
jectories where present, these were discarded due to shortness
of resulting supertrajectories. The accuracy for detecting two
speakers even in case of significant noise (SNR = 0 dB) is
around 65% and it exceeds 85% at SNRs over 15 dB. Fur-
thermore, with increasing SNR we see that errors are mostly
due to false positive (i.e., 3 speakers estimated instead of 2),
while for low SNR values we have mostly false negatives (i.e.,
0 or 1 speakers estimated instead of 2).

In a third experiment, we compare performance before
and after extracting FO-supertrajectories. To this end, we
added speech signals from the Kiel Corpus at random po-
sitions of signals containing street background noise (using
an SNR of 10 dB), resulting in a total of 21 minutes of test
material (6.4 minutes noise only, 6.4 minutes one speaker
only, 8.2 minutes containing two speakers). Evaluation of
automatic FO-trajectory extraction was then performed by
comparison to manually annotated FO-ground truth, where
extracted FO-trajectories in an e-neighborhood of the ground
truth were counted as correctly detected, and as false posi-
tives otherwise. Extracted supertrajectories are evaluated in
the same way, taking into consideration the trajectories that
compose them. Here, trajectories are considered to be false
positives if they are included in the supertrajectory of a wrong
speaker. Choosing ¢ = 15 Hz, we obtain a performance of
(TP,FP) = (0.82,0.14) for trajectory extraction only and
(TP,FP) = (0.79,0.11) after supertrajectory extraction. The
lower FP-rate in the latter is due to trajectories coming from
non-speech components being discarded in constructing su-
pertrajectories. The lower TP-rate indicates trajectories being
assigned to the wrong speaker.
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6. CONCLUSIONS

This paper presents two contributions to multiple speaker
detection in audio monitoring recordings. Firstly, we pro-
pose to use spectral shift-ACF features to obtain a robust
representation of FO-trajectories. From a comprehensive
baseline experiment using synthetic speaker signals, we con-
clude that the improved energy concentration of shift-ACF
features around FO makes them robust to both strong Gaus-
sian and sinusoidal interfering noises. Moreover, improved
performance in representing multiple speaker FOs mixed at
various energies has been shown. Secondly, we propose a
method for multiple speaker detection based on extracting
FO-supertrajectories. Experimental results on speech mixes
and realistic background noise indicate that the method is
already suitable for audio monitoring scenarios including up
to two simultaneous speakers. Suitability of the proposed fea-
tures for more than two speakers is indicated by experiments
on synthetic signals. A promising direction for future work
would be to combine the proposed method of using enhanced
FO- (super-) trajectories with existing methods such as [4, 5]
for estimating multiple mixed harmonic components.
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