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ABSTRACT

Generalized adaptive notch filters (GANFs) are estimators of

coefficients of quasi-periodically time-varying systems. Cur-

rent state of the art GANFs can deliver highly accurate esti-

mates of system variations’ frequency, but underperform in

terms of accuracy of the coefficient estimates. The paper pro-

poses a novel multistage GANF with accuracy improved in

this aspect. The processing pipeline consists of three stages.

The preliminary (pilot) frequency estimates are obtained first,

then treated with a specially designed linear filter and used

to guide the coefficient tracking GANF, which works out the

estimates of system coefficients. The proposed solution has

considerably better performance than a single stage GANF or

a simple two-stage approach consisting of the pilot frequency

estimator and the amplitude tracking GANF only.

Index Terms— generalized adaptive notch filters, estima-

tion algorithms, adaptive signal processing

1. INTRODUCTION

Consider the problem of estimating coefficients of a quasi-

periodically varying, complex-valued system governed by

y(t) = φT(t)θ(t) + v(t) (1)

where t denotes discrete time, y(t) is the system output, v(t)
is measurement noise, φ(t) = [φ1(t) φ2(t) . . . φn(t)]

T is

the regression vector, which is assumed to form a wide-sense

stationary sequence, θ(t) = [θ1(t) θ2(t) . . . θn(t)]
T consists

of time varying system coefficients,

θ(t) = β(t)f(t), f(t) = ej
∑t

τ=1
ω(τ) , (2)

where β(t) = [β1(t) β2(t) . . . βn(t)]
T denotes the vector

of complex “amplitudes”, f(t) is the phase term and ω(t) is

the instantaneous angular frequency. Both β(t) and ω(t) are

assumed to be slowly time-varying quantities.

Systems falling into the scope of (1)-(2) often appear in

RF applications when the Doppler effect comes into play [1].

In most cases y(t) and v(t) are baseband complex envelopes

of the received signal and the receiver noise, respectively,
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φ(t) consists of delayed replicas of the transmitted signal,

β(t) is the moving scatterer’s “impulse response” and ω(t)
is the scatterer’s Doppler frequency.

Estimation of coefficients of (1)-(2) can be accomplished

using many approaches, among which the generalized adap-

tive notch filter (GANF) takes an important place [2]. The

word “generalized” stems from the fact that, when n = 1,

φ(t) = φ(t) ≡ 1, the problem (1) simplifies to tracking of a

nonstationary complex sinusoid embedded in wideband noise

s(t) = β(t)ej
∑t

τ=1
ω(t) (3)

y(t) = s(t) + v(t), (4)

which is often solved using adaptive notch filters, see e.g. [3].

GANFs are capable of providing excellent frequency

tracking performance – under Gaussian random-walk type

assumptions they can reach a fundamental Cramér-Rao

type lower bound, which limits tracking accuracy of any

scheme [2]. However, they leave a room for improvement in

terms of estimation of the system coefficients. This can be

attributed to the fact that optimization of coefficient and fre-

quency tracking characteristics of the GANF are conflicting

goals [2].

The paper proposes a novel, multistage GANF. Capital-

izing on the excellent frequency tracking performance of a

standard GANF, and using a special processing pipeline, we

can improve quality of coefficient estimates without adversely

affecting frequency tracking performance.

The organization of the text is as follows. Section 2 intro-

duces the proposed multistage structure. Section 3 addresses

the problem of optimizing performance of the proposed filter.

Section 4 presents simulation results. Section 5 concludes.

2. PROPOSED SOLUTION

Fig. 1 shows the block diagram of the proposed solution. The

algorithm consists of three steps, whose detailed description

will be presented in the next three subsections.

2.1. Pilot filter

The purpose of the pilot filter is to work out initial, highly

accurate frequency estimates which will be used later in the
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Fig. 1. Block diagram of the proposed multistage generalized

adaptive notch filter.

processing. The pilot is a standard GANF, adopted from [2]

f̂(t) = ejω̂(t−1|t−1)f̂(t− 1)

ǫ(t) = y(t)− φT(t)f̂(t)β̂(t− 1)

β̂(t) = β̂(t− 1) + µΦ−1φ∗(t)f̂∗(t)ǫ(t)

δ(t) = Im
ǫ∗(t)φT(t)f̂ (t)β̂(t− 1)

β̂H(t− 1)Φβ̂(t− 1)

ω̂(t|t) = ω̂(t|t− 1)− γδ(t)

θ̂(t) = β̂(t)f̂(t) (5)

where ∗ denotes complex conjugation, H stands for Her-

mitian transposition, f̂(t) is a phase term, ǫ(t) denotes

prediction error, Φ is a positive definite correlation ma-

trix of regression vectors (assumed to be known a’priori),

Φ = E[φ∗(t)φT(t)] > 0, ω̂(t|t) denotes the estimate of

the instantaneous frequency, ω̂(t + 1|t) is its one-step ahead

prediction, and θ̂(t) is the estimate of θ(t). The parameters

µ > 0, γ > 0, γ ≪ µ are small adaptation gains which gov-

ern rates of amplitude and frequency adaptation, respectively.

2.2. Frequency postprocessor

Although this may seem doubtful at the moment, frequency

estimates yielded by the pilot should be postprocessed prior

to estimation of system coefficients. The postprocessor takes

the form of a linear filter

ω̄(t|t) = P (q−1)ω̂(t|t) (6)

where the transfer function P (q−1) will be found later.

2.3. Frequency guided filter

The coefficient tracking filter takes the form

f̄(t) = ejω̄(t|t)f̄(t− 1)

ǭ(t) = y(t)− φT(t)f̄(t)β̄(t− 1)

β̄(t) = β̄(t− 1) + µaΦ
−1φ∗(t)f̄∗(t)ǭ(t)

θ̄(t) = β̄(t)f̄(t) (7)

where µa > 0 denotes its adaptation gain.

3. OPTIMIZATION

3.1. Tracking analysis

To optimize the performance of the proposed GANF one

needs to come up with analytical results concerning its track-

ing behavior first. This can be done using the approximating

linear filter method – a linearization approach, introduced

in [4], for the purpose of analyzing adaptive notch filters.

Suppose that

(A1) The vector β(t) is constant, β(t) ≡ β0.

(A2) Instantaneous frequency ω(t) is governed by

ω(t) =
n(t)

A(q−1)

where A(q−1) is a (marginally) stable polynomial of order

nA, A(q−1) = 1+a1q
−1+ · · ·+anA

q−nA and n(t) is a zero

mean Gaussian white noise with variance σ2
n, independent of

v(t) and φ(t).

(A3) Measurement noise v(t), independent of n(t) and

φ(t), is a zero mean, wide sense stationary complex circular

Gaussian white noise with variance σ2
v , v(t) ∼ CN (0, σ2

v).

First, denote by ∆ω̂(t) = ω̂(t|t) − ω(t) the pilot’s fre-

quency estimation error and let e(t) = βH
0 φ

∗(t)f∗(t)v(t)/b20,

where b20 = βH
0 Φβ0. One can show that [2, 5]

∆ω̂(t) =
F (q−1)− 1

1− q−1
w(t) + F (q−1)C(q−1)eI(t) , (8)

where w(t) = ω(t) − ω(t − 1) is a sequence of one step

changes of instantaneous frequency, q−1 is the backward shift

operator, q−1w(t) = w(t − 1), C(q−1) = 1 − q−1, eI(t) =
Im[e(t)],

F (q−1) =
γ

1− (λ+ δ)q−1 + λq−2
(9)

and δ = 1−γ, λ = 1−µ. Note that, under (A1)-(A3), eI(t) is

a (real valued) zero mean Gaussian white noise with variance

σ2
eI

= σ2
v/(2b

2
0).

Second, using (8) it is straightforward to show that

ω̂(t|t) = F (q−1)u(t) (10)

where

u(t) = ω(t) + C(q−1)e(t)

can be interpreted as the underlying pseudomeasurement se-

quence for the frequency estimation problem.

Combining (6) with (10) one can obtain that

ω̄(t|t) = P (q−1)F (q−1)u(t) = L(q−1)u(t) (11)

which emphasizes the pseudomeasurement interpretation of

the pilot filter (10).

Third, let ∆θ̄(t) = θ̄(t)−θ(t) and∆β̄(t) = ∆θ̄(t)f∗(t).
Steady-state tracking accuracy of the guided filter may be

quantified using the following weighted mean square error

J = lim
t→∞

E[∆β̄H(t)Φ∆β̄(t)] . (12)
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It can be shown that, under weak conditions, J is related to

the transfer functionL(q−1) as follows (see appendix A in [6]

for details)

J =

∫ 2π

0

b20λ
2
a

|Λa(e−jω)|2

×

[

∣

∣L(e−jω)− 1
∣

∣

2
Sω(e

−jω)

+
∣

∣L(e−jω)C(e−jω)
∣

∣

2 σ2
eI

2π
+ 2

µ2
a

λ2
a

σ2
eI

2π

+
µa

λa

[

L(e−jω)C(e−jω) + L∗(e−jω)C∗(e−jω)
] σ2

eI

2π

]

dω ,

(13)

where L(e−jω) = L(q−1)|q=ejω , denotes the frequency re-

sponse of the filter L(q−1), C(e−jω) = C(q−1)|q=ejω , λa =
1−µa, Λa(e

−jω) = 1−λae
−jω and Sω(e

−jω) denotes power

spectral density of ω(t).

3.2. Optimization

Consider first the problem of finding the transfer function

Lω(q
−1) which minimizes frequency tracking errors

E[|∆ω̄(t)|2] → min ,

where ∆ω̄(t) = ω̄(t|t) − ω(t). These results will allow us to

gain more insight into the solution which minimizes (13) at a

later stage.

Under (A1)-(A3) the optimal, in the mean-squared sense,

causal estimator of ω(t) takes the form of the Wiener filter

L(q−1) =
X+(q

−1)

W (q−1)
, (14)

where W (q−1) denotes a stable, non-minimum phase causal

transfer function obtained by spectral decomposition of power

spectral density of u(t), further denoted as Su(q
−1)

W (q−1)W (q) = Su(q
−1)

=
σ2
n

2πA(q−1)A(q)
+

σ2
eI

2π
C(q−1)C(q) (15)

and X+(q
−1) is the causal part [correspondingly, X−(q) de-

notes the anticausal part] of crosspectral density between ω(t)
and u(t)

X(q−1) = X+(q
−1) +X−(q) =

σ2
n

2πA(q−1)A(q)W (q)
.

(16)

Note that W (q−1) may be represented in the following form

W (q−1) =
V (q−1)

A(q−1)
, (17)

where

V (q−1) = v0 + v1q
−1 + · · ·+ vnA+1q

−nA−1

is a polynomial of order nA + 1 such that

V (q−1)V (q) =
σ2
n

2π
+

σ2
eI

2π
A(q−1)A(q)C(q−1)C(q) . (18)

It follows that X(q−1), X+(q
−1), and X−(q) take the fol-

lowing forms

X(q−1) = X+(q
−1) +X−(q) =

σ2
n

2πA(q−1)V (q)

X+(q
−1) =

Y+(q
−1)

A(q−1)
X−(q) = q

Y−(q)

V (q)
(19)

where Y+(q
−1) and Y−(q) are polynomials of q−1 and q, re-

spectively.

Combining equation (14) with (19) leads to

Lω(q
−1) =

Y+(q
−1)

V (q−1)
. (20)

The following two properties, which both stem from eq.

(18), will prove useful

σ2
n

2π
= V (q−1)V (q)

∣

∣

∣

q=1
= V (1)V (1)

σ2
eI

2π
= vnA+1 . (21)

We are now in a position to move on to minimization of

(13). First, factor L(q−1) as

L(q−1) =
Λa(q

−1)H(q−1)

W (q−1)
, (22)

where H(q−1) =
∑∞

k=0 h(k)q
−k is a causal transfer func-

tion whose exact form is yet to be found. Note that the

adopted factorization does not impose any constraints other

than L(q−1) being causal – a proper choice of H(q−1) can

always “undo” both Λa(q
−1) and W (q−1). The purpose of

introducing Λa(q
−1) and W (q−1) into (22) is that enables

one to cancel some terms in the formulas which will appear

during analysis, thus making it simpler.

Substituting (22) and (A2) into (13) yields

J =

∫ 2π

0

b20λ
2
a

|Λa(e−jω)|2

×

[

∣

∣

∣

∣

Λa(e
−jω)H(e−jω)

W (e−jω)
− 1

∣

∣

∣

∣

2
σ2
n

2π|A(e−jω)|2

+

∣

∣

∣

∣

Λa(e
−jω)H(e−jω)C(e−jω)

W (e−jω)

∣

∣

∣

∣

2
σ2
eI

2π
+ 2

µ2
a

λ2
a

σ2
eI

2π

+
µa

λa

Λa(e
−jω)H(e−jω)C(e−jω)

W (e−jω)

σ2
eI

2π

+
µa

λa

Λ∗
a(e

−jω)H∗(e−jω)C∗(e−jω)

W ∗(e−jω)

σ2
eI

2π

]

dω . (23)
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Taking a complex-real derivative [7] of J with respect to

h∗
k, equating to 0, and moving all terms without H(e−jω) to

the right hand side leads to the following necessary condition

∫ 2π

0

H(e−jω)

|W (e−jω)|2

[

σ2
n

2π|A(e−jω)|2
+ |C(e−jω)|2

σ2
eI

2π

]

ejωkdω

=

∫ 2π

0

σ2
n

2πΛa(e−jω)W (ejω)|A(e−jω)|2
ejωkdω−

∫ 2π

0

µa

λa

σ2
eI
C(ejω)

2πΛa(e−jω)W (ejω)
ejωkdω k = 0, 1, . . .

where we also employed the fact that W ∗(e−jω) = W (ejω)
and, similarly, C∗(e−jω) = C(ejω).

Observe that the term in braces on the left hand side equals

Su(e
−jω) [c.f. (15)]. This immediately simplifies the left

hand side to

∫ 2π

0

H(e−jω)ejωkdω = 2πh(k), k = 0, 1, . . .

Similarly, using eq. (16) transforms the right hand side to

∫ 2π

0

X+(e
−jω)

Λa(e−jω)
ejωkdω +

∫ 2π

0

X−(e
jω)

Λa(e−jω)
ejωkdω+

−

∫ 2π

0

µa

λa

σ2
eI
C(ejω)

2πΛa(e−jω)W (ejω)
ejωkdω k = 0, 1, . . .

(24)

Therefore, we can say that the transfer function H(q−1) is a

sum of three terms

H(q−1) = H1(q
−1) +H2(q

−1) +H3(q
−1) , (25)

corresponding to the integrals in (24), whose exact forms are

yet to be found.

Caution is required at this stage, because H1(q
−1),

H2(q
−1), H3(q

−1) are all causal transfer functions. This

stems from the fact that we restrict k in (22) to nonnegative

values only. However, the integrals include noncausal terms,

such as X−(e
jω) or C(ejω) – the resulting noncausal parts of

inverse Fourier transforms should be discarded. The “right”

solution to this problem is (see [6] for details)

H1(q
−1) =

X+(q
−1)

Λa(q−1)

H2(q
−1) =

X−(λa)

Λa(q−1)

H3(q
−1) = −

µa

λa

σ2
eI
C(λa)

2πW (λa)Λa(q−1)
, (26)

where X−(λa) denotes the value of X−(q) evaluated at q =
λa, X−(λa) = X−(q)|q=λa

. Similarly, C(λa) = C(q)|q=λa

and W (λa) = W (q)|q=λa
.

Tracing back to L(q−1) leads to [c.f. (11)]

L(q−1) = L1(q
−1) + L2(q

−1) + L3(q
−1)

L1(q
−1) =

X+(q
−1)

W (q−1)
= Lω(q

−1)

L2(q
−1) =

X−(λa)

W (q−1)

L3(q
−1) = −

µa

λa

σ2
eI
C(λa)

2πW (λa)W (q−1)
. (27)

Using equations (16), (17), (20) and (21) allows one to rewrite

L2(q
−1) and L3(q

−1) as (see [6] for details of the derivation)

L2(q
−1) =

[

V (1)V (1)

V (λa)V (λ−1
a )

− Lω(λ
−1
a )

]

V (λ−1
a )

A(λ−1
a )

A(q−1)

V (q−1)

L3(q
−1) = −

µa

λa

vnA+1C(λa)
A(λa)

V (λa)

A(q−1)

V (q−1)
, (28)

where V (λ−1
a ) = V (q−1)|q=λa

, A(λ−1
a ) = A(q−1)|q=λa

,

Lω(λ
−1
a ) = Lω(q

−1)|q=λa
.

3.3. Finalized algorithm

Suppose that (A1)-(A3) hold, A(q−1) = 1− q−1 and that the

pilot filter is well tuned, i.e. F (q−1) in (10) equals Lω(q
−1)

[2]. In such case the nominator and denominator of F (q−1),
further denoted as N(q−1) and D(q−1), must be equal, up to

a constant multiplicative term α, to Y+(q
−1) and V (q−1),

F (q−1) =
N(q−1)

D(q−1)
=

αY+(q
−1)

αV (q−1)
. (29)

Moreover, since the estimates yielded by the pilot filter

take the form ω̂(t|t) = Lω(q
−1)u(t), the postprocessor can

be reduced to [c.f. (6), (11), (28)]

ω̄(t|t) =

[

1 + (l2 + l3)
A(q−1)

N(q−1)

]

ω̂(t|t) (30)

l2 =

[

D(1)D(1)

D(λa)D(λ−1
a )

− F (λ−1
a )

]

D(λ−1
a )

A(λ−1
a )

l3 = −
µa

λa

λC(λa)
A(λa)

D(λa)
. (31)

4. SIMULATION RESULTS

The simulated system, excited using a white 4-QAM se-

quence with Φ = 2I, took the form

y(t) = [β1(t) β2(t)]e
j
∑t

τ=1
ωi(τ) + v(t)

β1(t) =

[

1 + 0.5 sin

(

2πt

2000

)]

(2− j)

β2(t) =

[

1 + 0.5 cos

(

2πt

2000

)]

(1 + 2j)

ω(t) = 0.1 + 0.5 sin

(

2πt

2000

)

.
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Fig. 2. Comparison of steady state mean-squared coefficient

tracking errors yielded by three GANF variants for differ-

ent values of adaptation gains under high SNR: Single-stage

GANF (squares),Multistage GANF without frequency post-

processor (circles), Multistage GANF with frequency post-

processor (diamonds).

Three approaches were compared: the single-stage GANF

(5), the cascade of the pilot GANF followed by the frequency

guided filter (without the frequency postprocessor), and the

proposed solution.

In the first case the adaptation gain µ took several values

the interval [0, 0.25]; each time γ was set to µ2/2. In the case

of the two multistage solutions, the optimal values of adapta-

tion gains of the pilot filter were found using exhaustive nu-

merical search in the interval µ ∈ [0, 0.5] with γ = µ2/2
and then distorted by a factor of two. This was made on pur-

pose, to make the simulation more realistic. The parameter

µa of the frequency guided filter took several values from the

interval [0, 0.25].
The simulation experiment was performed both for high

and low values of signal to noise ratio. In the first case, the

measurement noise variance was equal to σ2
v = 0.2 while in

the low SNR case σ2
v was set to 6.32

The results of the simulation, depicted in Fig. 2 and Fig.

3, show that the proposed approach delivers the best perfor-

mance, despite the fact that the pilot filter was deliberately

mistuned. Furthermore, note that the performance gains are

almost two-fold and that the overall ‘operating window’ of the

proposed algorithm is much wider. These factors demonstrate

the robustness of the proposed multistage GANF.

5. CONCLUSIONS

The problem of estimating coefficients of a quasi-periodic

system was considered. The proposed approach is based on

a previously introduced GANF and the concept of multistage

processing. It consists of the pilot filter, which works out fre-

quency estimates, a frequency postprocessor, which takes the

0 0.05 0.1 0.15 0.2 0.25

10
0

10
1

10
2

µ, µa

E
[∆

β̄
H
Φ

∆
β̄
]

Fig. 3. Comparison of steady state mean-squared coefficient

tracking errors yielded by three GANF variants for differ-

ent values of adaptation gains under low SNR: Single-stage

GANF (squares), Multistage GANF without frequency post-

processor (circles), Multistage GANF with frequency post-

processor (diamonds).

form of a nontrivial linear filter, and a frequency guided filter,

which tracks coefficients of the system of interest.
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