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ABSTRACT

This paper proposes a novel Phasor Measurement Unit
(PMU) algorithm for P and M class measurement using
vector-based operation with originally designed pseudo-IQ
signal translation using a delay device. A PMU is an essential
equipment in the smart grid. However some technical diffi-
culties with frequency measurement are still discussed. The
presented algorithm in this paper aims to be a compact algo-
rithm with implementations for breakthrough by 1) directly
measuring the nominal frequency by using an F0 measure-
ment method, 2) using vector product operation to calculate
the phasor, and 3) not using DFT or the quadrature hetero-
dyne method due to the difficult filter design requirements
This paper also reports on the evaluation result based on
IEEE Std C37.118.1, and the presented algorithm shows ex-
cellent frequency measurement, dynamic response, stability,
and preciseness

Index Terms— PMU, IQ-signal, Instantaneous Fre-
quency, Delay Device

1. INTRODUCTION

The phasor measurement unit (PMU) is the key equipment
in the smart grid and its applications. The PMU monitors
voltage and phasor information by specified report rate (Fs).
However, the PMU algorithm currently has technical difficul-
ties concerning the frequency measurement of dynamic wave-
forms [1]. In particular, the C37.118 requirement amend-
ment [2] stated that a few requirements were achievable.

In particular, it was difficult to meet the mains frequency
(f0), rate of change of frequency (ROCOF), frequency er-
ror (FE), and ROCOF error (RFE) requirements with the lat-
est hardware when the reference model provided in the stan-
dard was used . The main stream of frequency/phasor mea-
surement methods are DFT-based or quadrature heterodyne.
There are drawbacks with both. The frame length in DFT
should fit the nominal frequency. The design of the low pass
filter (LPF) in the quadrature heterodyne method as described
in C.37.118 [3] to achieve out-of-band robustness is diffi-
cult. A DFT-based algorithm with fitting [4] shows higher

accuracy; however, this implementation requires high perfor-
mance FPGA(s).

This research aims to achieve precise frequency measure-
ment in two cycles of single-phase input while complying
with both P and M class requirements. The second purpose
is that our algorithm can run on an ordinary PC and embed-
ded software. To achieve the above purposes, we used vector
product operation and introduced an F0 measurement method
originally designed for acoustic signal processing [5]. If we
can directly measure nominal mains frequency (50/60 Hz)
without using three-phase inputs, the measurement of RO-
COF can be improved, and most of the problems that we face
can be solved.

The proposed algorithm in this paper consists of five units:
1) direct frequency measurement, 2) vector operation, 3) IQ-
signal transform, 4) reference signal generator, and 5) averag-
ing operation for miscellaneous purposes.

This paper firstly illustrates the algorithm and implemen-
tations on a PC, secondly shows the total vector error (TVE)
evaluation based on the IEEE standard [3], and finally demon-
strates excellent capability of frequency tracking by using a
high ramp rate (Hz/s) in single-phase input and discontinu-
ously changing the frequency of the input.

2. PRINCIPLE

This section describes the principle and processing diagram
of the vector-based synchrophasor measurement. In this pa-
per, we use normalised frequency. F = f

fs
, Ω = 2πF =

2πf/fs = Ω/fs, where fs is the sampling frequency. The
sampling interval ∆T = 1/fs. Let φ denote the phase angle
or phase difference. In this paper, signals are described in a
discrete system as explained in Eq. (1)

s(t) = A · sin(ωt − φ)

s[n] = A · sin(ω(∆Tn) − φ) = A · sin(Ωn − φ)

where Ω = 2πf/fs = ω/fs = ω · ∆T (1)

2.1. Signal Diagram and Overview

First of all, the system diagram is illustrated in Fig. 1. The
amplitude/phasor information can be calculated by vector op-
eration (dot, cross, and norm). The vector operation is per-
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formed by using IQ signals; the IQ translation is performed
based on frequency information. The frequency is measured
as the instantaneous frequency (IF) . The functions are ex-
plained below.

1. IF unit measures the instantaneous frequency using the
delay operation, algorithm, and formula, which are de-
scribed in section 2.2.

2. IQ unit translates the real single-phase signal to the IQ
signal using one delay device. The author named this
pseudo-IQ translation. The details are described in sec-
tion 2.4.

3. Vector-op. calculates vector products (dot and cross)
for phasor and amplitude by using the norm.

4. Reference oscillator provides reference quadrature sig-
nals to vector-op.

AMPLITIDE  OUTPUT 
  Amp = |x1| 

IQ-signal(1)  
x1 = (I1,Q1) 

Input x1[n] 
= A1 sin(nΩ1) 

PHASOR OUTPUT 
  Phasor = (cosφ, sinφ) 

Vector-Op. 

IQ-signal(2) 
x2 = (I2,Q2 ) 

IQ 
IQ signal 

generation 

IF 
Frequency 

Measurement 

 Reference 
Oscillator 

 
I2 = A1 cos(nΩref) 

 Q2 = A1 cos(nΩref) 
 

Measured Ω1 

cos! =
!x1 !
!x2

| x1 || x2 |

sin! =
!x1 !
!x2

| x1 || x2 |

Power1 = I1
2 +Q1

2

Power2 = I2
2 +Q2

2

FREQUENCY  OUTPUT 
  f = fs/2πK ・arccos(1/2 Ls2/Ls1) 

Reference freq. Ωref 

Fig. 1: Signal Processing Diagram

2.2. Instantaneous Frequency Measurement

This section describes a novel method for instantaneous fre-
quency measurement by using a set of explicit functions, as
described in Eq. (2). Note that fs is the sampling frequency
and K is the delay count in the unit. The implementation uses
averaged values of Ls for more robustness. Lissajous’ prod-
uct Ls is explained in section 2.2.2. Note that four samples of
input data are used to obtain the instantaneous frequency.

f[i] =
fs

2πK
arccos



1

2
·
Ls2[i]

Ls1[i]

ff

Ls1[i] = s[i−K/2]s[i−3K/2−1] − s[i−K/2−1]s[i−3K/2]

Ls2[i] = s[i]s[i−2K−1] − s[i−1]s[i−2K] (2)

f = fs
2!K

arccos 1
2
!
ave(Ls2 )
ave(Ls1)

"

#
$

%

&
'
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Fig. 2: Frequency-Measurement Unit
2.2.1. Derivation of Formula

In this subsection, we explain the derivation of Eq. (2). The
idea of the formula comes from the traditional Lissajous’ fig-
ure. Section 2.2.2 describes the idea of the Lissajous’ product.

Section 2.2.3 describes how to measure phase shift using the
Lissajous’ Product. Section 2.2.4 describes the phase shift on
a delay device. Section 2.2.5 derives the final equation.

2.2.2. Lissajous’ Figure

Figure 3 shows the Lissajous’ figure and the partial move-
ment. Let Ls(x, y) denote the Lissajous’ product defined by
Eq. (3) Note that the small triangle area ∆S in Fig. 3 equals
1/2Ls.

Ls(xn, yn) = xn−1 · yn − xn · yn−1 (3)

xn O 	

xc	
 xm	


!
Pn!1

!
Pn

ΔS  
 

 yn 
 

Fig. 3: Lissajous’ Figure

2.2.3. Phase Shift Calculation

The author has presented Eq. (4) for phase shift calcula-
tion [6]. Eq. (4) means that the phase difference between
signal xn, yn can be calculated by using the above Lissajous’
product and given frequency Ω(= 2πf/fs). This subsection
describes the derivation of Eq. (4).

sin φc =
Ls(xn, yn)

AB sinΩ
(4)

(1) Signal Assumption
First, assuming x(t) = A sin(ωt), y(t) = B sin(ωt − φc) as

the Lissajous’ figure traces indicate in Eq. (5).

x1 = xn−1 = A sin(Ω(n − 1))

y1 = yn−1 = B sin(Ω(n − 1) − φc)

x2 = xn = A sin(Ωn)

y2 = yn = B sin(Ωn − φc)

~P1 = (x1, y1) , ~P2 = (x2, y2) (5)

The area of the triangle ∆S is obtained by Eq.(6)

∆S =
1

2
( ~P1 × ~P2) =

1

2
(x1y2 − x2y1) (6)

(2) ∆S transform
Second, Eq. (6) is transformed into Eq. (7). To simplify,

sin X sin Y = 1
2
{cos(X − Y ) − cos(X + Y )} is used.

∆S =
1

2
(x1y2 − x2y1)

= 1
2
AB{sin(Ω(n − 1)) · sin(Ωn − φc)}

− 1
2
AB{sin(Ωn) · sin(Ω(n − 1) − φc)}

= 1
4
AB{cos(−Ω + φc) − cos(Ω(2n − 1)−φc)}

− 1
4
AB{cos(Ω + φc) − cos(Ω(2n − 1)−φc)}

= 1
4
AB{cos(−Ω +φc) − cos(Ω + φc)} (7)
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Then, using cos X − cos Y = −2 sin(X+Y
2

) sin(X−Y
2

) ,
Eq. (7) is simplified. Next, Eq. (8) is derived.

∆S = 1
4
AB{cos(−Ω +φc) − cos(Ω + φc)}

= − 1
2
AB{sin(φc) · sin(−Ω)}

= 1
2
AB{sin(φc) · sin(Ω)} (8)

Note that ∆S = 1
2Ls(x, y); therefore,

sin φc =
Ls(x, y)

AB sinΩ
(9)

Eq. (4) was derived.

2.2.4. Phase Difference on a Delay Device

A Delay device (delay = K, sampling frequency fs, ∆T =
1/fs) causes phase difference φ = KΩ using normalised fre-
quency Ω, as shown in Eq. (10).

sin(ω(t + K∆T )) = sin(ωt + Kω∆T )

= sin(ωt + KΩ) (10)

Delay 
 (=Z-k) 

Input x[n] 
=A1 sin(nΩ)	
 Phase Difference  

   φ= KΩ	


Fig. 4: Phase Difference on a Delay Device

2.2.5. Instantaneous Frequency by Two Delay Device

This section shows the final step of deriving Eq. (2). We use
the phase shift on a delay device as explained above. The
phase difference φ1 on Delay1 (shift = K) and φ2 on Delay2
(shift = 2K) are considered. Figure 5 shows an implemen-
tation example of preparing a K and 2K delay. The phase
differences of φ1and φ2 are described in Eq. (11),(12).

Delay 1 
(=Z-K/2) 

Input s[n] 
=A sin(nΩ)	
 Delay 2 

(=Z-K/2) 
Delay 3 
(=Z-K/2) 

Delay 4 
(=Z-K/2) 

Phase Differenceφ1	


on Ls1 (by K) 

Phase Difference φ2 
on Ls2 (by 2K) 

Sp[n] Sq[n] Sr[n] Ss[n] 

Fig. 5: Phase Shift φ1, φ2 on Two Delay Devices

sin φ1 = sin KΩ =
Ls1

A2 sinΩ
(11)

sin φ2 = sin 2KΩ =
Ls2

A2 sinΩ
(12)

Here, by combining Eq. (11) and Eq. (12) and by using
sin 2x = 2 cos x sinx, Eq. (13) is derived.

sin 2KΩ

sin KΩ
=

Ls2

Ls1
= 2 cos KΩ

Ω =
1

K
arccos

„

1

2

Ls2

Ls1

«

f =
fs

2πK
arccos

„

1

2

Ls2

Ls1

«

(13)

2.3. Vector Operation

The vector operation calculates the amplitude, phasor, and
frequency. The phasor can be obtained by using the vector
product and Eq. (14) (Fig. 6). Note that the input signals
must be IQ signals.

cos φ =
~x1 · ~x2

|~x!|| ~x2|
, sin φ =

~x1 × ~x2

| ~x1|| ~x2|
(14)

Input x1=(I1,Q1) Input x1[n] 
=A1 exp( jnΩ) 
	


         Phasor 
 S = (cosφ, sinφ) 

Vector Product 
(Dot, Cross) Input x2[n] 

=A2 exp( jnΩ+jφ) 
	


Input x2=(I2,Q2 ) 
cos sin 

Fig. 6: Vector Operation

2.4. IQ-Signal Generation

Vector operation was explained in the previous section. How-
ever, IQ signals are mandatory. This section illustrates our
simple approach to generate IQ signals (Fig. 7). Transforma-
tion is described in Eq. (15). The principle is the phase differ-
ence on a delay device described in section 2.2.4. To generate
accurate π/2 phase shift, linear composition with a0, a1 is
applied. a0, a1 are calculated as shown in Fig. 8.

a0 = tan(KΩ − π

2
), a1 =

1

cos(KΩ − π
2
)

In = xn

Qn = a0 · xx + a1 · xn−K (15)

Delay 
 (=Z-1) 

Input x[n] 
=A1 sin(nΩ)	


I - Output 

Q - Output 

Gain  
  θ = Ω – π / 2 
    a0= tan θ 
    a1= 1 / cos θ 

Frequency Ω	


Fig. 7: Pseud-IQ Signal Generation
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Fig. 8: Vector chart to define a0 , a1
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2.5. Averaging

The averaging operation is used in this system. This section
shows the optimised moving average method to reduce the
calculation amount. In general, averaging can be described in
the z-domain as Eq. (16).

Have =
1

N
{1 + z−1 + z−2 + ... + z−(N−1)} (16)

This can be translated as:

Have =
1

N



1 − z−N

1 − z−1

ff

(17)

Eq. (17) indicates that the operation requires one integration,
one subtraction, and one division as specified by count N .
The number of additions is less than that of Eq. (16). Figure
9 shows the signal processing diagram.

Delay 
(=Z-1) 

Input x[n] 
=A sin(nΩ)	


Multiple Delay  
(Z-1 to Z-N) 

Averaged = 1/N (D[N] – D[0]) 

Delay out D[n] 

Averaged 
Output Ave[n] 

Delay in D[0] 

Fig. 9: Averaging Operation

3. IMPLEMENTATION

The algorithm was implemented on a PC with audio IO, WAV
file IO, and software-emulated signal generation.

• PC: iMac (Intel Core 2 Duo, 2.66 GHz)
• OS: Windows 7, Visual C++ 2010, native programming

with GDI control. No MFC is used.
• ADC: fs = 44100 Hz, general audio interface.
• Max 8 CH can be processed.
• Result: averaged in 1/Fs sec (tunable).
• Time Window: 2/f0 (40 msec for 50 Hz)

Fig. 10: Screen Shot of Prototype Software (Upper Left:
Mains Frequency),(Upper Right: Phasor), (Lower Left: Nu-
merical Result),(Lower Right: Waveforms)

4. EVALUATION

This section describes the evaluation results. In this evalua-
tion, in particular, we focus on frequency resolution and dy-
namic response of frequency movement in input signals. To
evaluate the dynamic response, frequency tracking examina-
tion by high frequency change rate was performed.

4.1. TVE

The TVE results are shown in Table 1. Pure sinusoid waves
were used. Higher reporting rates (Fs) were intentionally ex-
amined to show the quick processing cycle.

Table 1: TVE Evaluation (Pure Signal)

Fs(report rate) 10 50 100 200
45.0 0.4168 0.4168 0.4168 0.4168
49.5 0.0082 0.0082 0.0082 0.0082
49.9 0.0014 0.0014 0.0014 0.0014

Freq. 50.0 0.0001 0.0001 0.0001 0.0001
(Hz) 50.1 0.0015 0.0015 0.0015 0.0015

50.5 0.0082 0.0082 0.0082 0.0082
55.0 0.4168 0.4168 0.4168 0.4168

Unit per cent. Using pure sinusoid wave

4.2. Linear Frequency Ramp Test

Figure 11 shows the results of the linear frequency ramp
tracking test. The standard is described in Table 7 of IEEE
Std C.37.118 [3]. The low change rate of 1 Hz/sec and the
high change rate of 100 Hz/sec were examined.
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Fig. 11: Linear Frequency Ramp Tracking Test (Low Rate =
1.0Hz/sec)

4.3. Step Frequency Change Test

Figure 13 shows the results of step frequency change tracking.
The technical information is described in Annex B in IEEE
Std C.37.118 [3]. The step frequency change causes tran-
sient behaviour; however, this disappears in several decades
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Fig. 12: Linear Frequency Ramp Tracking Test (High Rate =
100Hz/sec)

of msec on our algorithm. The step frequency change causes
phase shift. The measured phase angle was consistent with
the theoretical value.
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Fig. 13: Step Frequency Change Tracking Test (±0.5Hz)

4.4. Mains Frequency Measurement

Figure 14 shows mains frequency tracking in Kansai Electric
Power Company (KEPCO) measured in Nomi City, Ishikawa
prefecture. The waveform was monitored indirectly by static
induction from 275 kV lines without transform (VCT). Small
movements with different periods are observed.

5. SUMMARY OF EVALUATION

The TVE evaluation satisfies the steady-state requirements in
C37.118. The ramp/step frequency test results show the pre-
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Fig. 14: Measurement of Mains Frequency of KEPCO Japan

sented algorithm has excellent transient response in a short
period and preciseness. The implemented SW can directly
measure mains frequency as proven by the field test.

6. CONCLUSION

A novel algorithm without DFT and compact implementa-
tion of synchrophasor was proposed. Excellent capability of
frequency tracking by the presented algorithm was demon-
strated.
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