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ABSTRACT

In this paper, we put forward a computationally efficient al-
gorithm to estimate the frequency and complex amplitude
of a real sinusoidal signal in additive Gaussian noise. The
novel method extends an iterative frequency estimator for
single complex exponentials that is based on interpolation
on Fourier coefficients to the real case by incorporating an
iterative leakage subtraction strategy. Simulation results are
presented to verify that the proposed algorithm can obtain
more accurate estimation than both time and frequency do-
main parameter estimators in the literature, and the estimation
variance of the method sits on the Cramer-Rao lower bound
with only a few iterations required.

Index Terms— Frequency estimation, interpolation algo-
rithm, Fourier coefficients, real sinusoid.

1. INTRODUCTION

The estimation of the parameters of a real sinusoidal signal
in noise is a classical yet important research problem in many
applications [1] [2]. The estimation problem in this paper is
based on the signal model

x(n) =acosrfn+¢)+w,(n), n=0,....N-1, (1)
with n representing the sample time index and N the number
of samples. The parameters a, ¢ and f are the amplitude,
initial phase and the normalised frequency f € (0, 0.5], which
we try to estimate. The noise terms w,(n) are assumed to be
real Gaussian with zero mean and variance o>. The signal to
noise (SNR) is defined as p = |a|*/0>.

Much work has been done on this problem and the avail-
able algorithms can be classified into time domain and fre-
quency domain methods [3]. Traditional time-domain meth-
ods such as Prony’s, Pisarenko’s methods and the MUlItiple
SlIgnal Classification (MUSIC) [2], are outperformed by later
developed algorithms such as Estimation of Signal Param-
eters via Rotational Invariant Techniques (ESPRIT) [4] and
Matrix Pencil [5]. They are based on the Singular Value De-
composition (SVD) operation to separate the signal and noise
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subspaces. Moreover, the recently proposed Weighted Least
Squares (WLS) approach [6] is capable of achieving perfor-
mance that attains the Cramer-Rao Lower Bound (CRLB) by
employing an iterative minimisation procedure of the sum
of the squared error between the ideal model and the noisy
data. These are high resolution estimators that can achieve
accurate estimates but at the same time are computation-
ally complex due to the SVD operation and matrix inversion
(O(N?)). The frequency-domain estimators [1], on the other
hand, are mostly based on interpolation of the DFT coeffi-
cients [7], [8]. Although they are computationally simpler, as
they take advantage of the FFT implementation, they exhibit
lower estimation accuracy due to the estimation bias caused
by the spectral leakage [9]. In spite of windowing methods
[1] [10] being proposed to remove the spectral leakage by
pre-windowing the signal using a non-rectangular window,
they achieve the reduction of the interference by sacrificing
the estimation accuracy.

In this paper, we put forward a novel iterative algorithm
that operates in the frequency domain yet can achieve un-
biased and accurate parameter estimation with no window-
ing involved. At the heart of our algorithm is the estimator
of Aboutanios and Mulgrew [8] [11] (the A&M algorithm),
which we wrap in an iterative estimation strategy that incor-
porates leakage subtraction [12] to attain accurate parameter
estimation. The computational cost of the novel algorithm is
of the same order as the computational cost of the FFT op-
eration (O(N log N)), which is more efficient than the high
resolution methods.

The rest of the paper is organised as follows. In Section 2,
we review the original A&M algorithm and present the novel
parameter estimator. The simulation results are shown in Sec-
tion 3. Finally, conclusion is drawn in Section 4.

2. THE ESTIMATION ALGORITHM

Before putting forward the new estimation strategy, we review
the original A&M algorithm for a single complex exponential.
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2.1. The A&M Algorithm

Table 1. The A&M Algorithm

Given A complex exponential x(n),n =0,...,N —1;
Find X(k) = FFT(x) and Y(k) = |X(k)[*;
Find /M =arg m’?x Y(k);
Set 5=0;
Loop Forifrom 1to2,do
N-1 e
(1) Xi — Z x(n)e—]%(m+5i05)n;
n=0 N
2)6=56+R{h}jord=5+ 548
g
where h, = 1X+ X ,and
2X,—-X_ |
el -2msn(3)]
A M40
Find = .
in f N

From this point on, we use A to denote the estimate of the
parameter A. The A&M algorithm estimates the frequency of
the signal with the following model

x(n) = a. e +w.(n), n=0,...,.N—1, 2)

where a, is the complex amplitude. The noise terms w,(n) are
assumed to be complex Gaussian noise with zero mean and
variance 2.

To estimate the frequency, the algorithm comprises two
stages: the coarse estimation stage and the fine estimation
stage. In the coarse estimation stage, the maximum bin of
the periodogram is found to be the initial estimation of the

frequency:

2

N-1
it = arg max ZO x(n)e I ¥k 3)
As aresult, the true frequency can then be represented by:
m+0
= 5 4
f== 4)

where 6 € [-0.5,0.5] is the frequency residual. In the fine es-
timation stage, the coarse estimation is then refined by calcu-
lating ¢ using an estimator based on interpolation of Fourier
coefficients on either side of the maximum bin at locations
(m = 0.5). The noise-free interpolated coefficients are given
by:

N-1 216
2 1+eé
X+ - x(n e—jﬁ(miO.S)n —q— 5
A Z(; (n) = A
By constructing the following estimator [11]:
- -1
1= el ¥ = [cos(%)—Zjhcsin(%)] , (6)

where X 4 X
X
= — , 7
‘T 3X, X (N
0 is obtained by:
N
0=—/z, 8
2w ®)

where /z is the angle of z. Eq.(8) is considered to be the
exact version of the A&M estimator. Now by linearising the
denominator of Eq.(5) using the approximation 1 — e* ~ —x,
we have:

N 1+ ¢/
X+ X C i
¥ e 5705 ©)
which results in:
Rih} = 6, (10

where R{e} denotes the real part of e. Eq.(10) is regarded as
the approximate version of the A&M estimator and the real
operation is necessary to reduce the estimation variance in
the presence of noise [8].

For further improvement of accuracy, the fine estimation
stage is performed for the second iteration, before which the
estimated residual in the first iteration is removed from the
maximum bin. After two iterations, the algorithm is capable
of obtaining an asymptotically unbiased frequency estimate
with the estimation variance only 1.0147 times the CRLB [8].
Finally, the estimation procedure of the A&M algorithm is
summarised in Table 1.

2.2. The New Estimator

The real sinusoid shown in (1) can be represented as a sum of
two complex exponentials:

. gij¢ .
x(n) = aTeﬂ”f" + aTe_ﬂ”f" + wy(n)

AP 4 A% eI 4y ()

s(n) + s*(n) + wy(n), a1

where A = ae’?/2.

The parameter estimation problem of a real sinusoid is
then converted to the estimation problem of two complex ex-
ponentials s(n) and s*(n). Intuitively, the estimation of fre-
quency of s(n), which is also the frequency of x(n), can be
performed by an iterative procedure involving removing in-
terference caused by s*(n). In [13], the authors proposed an
approach of converting the problem to the single-tone case
by subtracting the component s*(n) before estimation. In this
work, however, we utilise the idea presented in [12] and ac-
complish the estimation by only removing the leakage caused
by s*(n) in an iterative fashion. However, as a real sinusoid
is being considered, the leakage subtraction scheme in [12] is
modified to accommodate the fact that the two exponentials
have frequencies of opposite sign and complex conjugate am-
plitudes.
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Let /2 be the maximum bin estimate of s(n) and is as-
sumed to be identical to the true value. Now the frequency
of s(n) is given by (4) with ¢ being the residual we need to
estimate. We also denote 6 and A to be the estimates of &
and A obtained in the previous iteration. Then in each iter-
ation, the noiseless interpolated Fourier coefficients at loca-
tions 71 + 6 + 0.5 are represented by:

—jZ (im+6+0.5)n (12)

N-
X, = Zs(n)+s(n)
n=0

1+ ejZﬂ((S*(?) 1+ e—jZn(cHS)

Il
S

- +
1— ej%(d—(ﬁO.S)

= S.+95.,

l—e JZ (2in+6+6+0.5)

where S. are the expected interpolated Fourier coefficients
corresponding to s(n) and S . are the leakage terms introduced
by s*(n). S . can be estimated utilising ¢ and A:

. 1 + g /4
=A" e— (13)
1-— e—jz"(2m+25+0 5)°

Lo
H

and we can obtain the estimates of the expected coeflicients
by subtracting S from X:

A

S = X: -5, (14)
which straightforwardly leads to the estimation function:

S, +S
h,:—‘R §-36. 15
2 {S+—S_} (1)

Notice that here we use the approximate version of the A&M
estimator as it is already capable of obtaining sufficiently ac-
curate results. The estimation of A is obtained by

N-
A = Z [x(n) — §*(n)Je /7 om
N-1 — jand
1 dmos 2 N 1 =€/
_ - —j5(m+on _ fx
= 5 ;x(n)e N A —1 . 14"(m+6)) (16)

and we can obtain the estimation of a and ¢ from A by:

a=2A|, and ¢ =‘/A. (17
To conclude this section, the detailed procedure of the pro-
posed real signal estimator is tabulated in Table 2.

3. SIMULATION RESULTS

In this section, we present the simulation results of the pro-
posed frequency estimation algorithm to verify its perfor-
mance. For all the results demonstrated below, we fix N = 64
and a = 1. 5,000 Monte Carlo runs were used for generating
the figures in the section.

Table 2. The Proposed Estimator

Given A real sinusoid x(n),n=0...,N —1;
Find X(k) = FFT(x) and Y (k) = |X(k)]*;
Find

= argmkaxY(k), if m > %,n% =N -
Set §=0and A = 0:
Loop Forifrom1to Q,do

- N-1 [P
(1) .= Z x(n)e—jﬁ(m+6j:045)n;

n=0 N
s o 1 + /40
2 A
( ) Si 1 —e 12” (2m+26+0.5)°

3)é6=6+- %{S++§ }
S, -S_

O Y et s L 1 e
) A= [Z xR e "¢ )

,and § =)~(¢—§;

4n
~ 1—e WV (m+0)

Find f=

1
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Fig. 1. RMSE of f versus f when ¢ = 0 and SNR=20dB.

We firstly investigate the performance of the algorithm
as a function of the frequency f. Due to the periodicity of
the spectrum of a real signal, we are only interested in the
results for f € [0,0.25]. As f move closer towards zero,
the two complex components become closer to each other.
On the other hand, when f shifts towards 0.25, the complex
components approach to their largest separation. In this test
we fix ¢ = 0 and SNR = 20dB. Fig. 1 shows the Root
Mean Square Error (RMSE) of f versus f from 0.0156 (which
is 1/N) to 0.25. For the sake of benchmarking the perfor-
mance, the novel method is compared with the CRLB [14].
We can find that more iterations are needed when the fre-
quency gets smaller. When Q = 2, the RMSE follows the
CRLB at f > 0.035, while Q = 8 is sufficient for the RMSE
to sit on the CRLB for all f.

In Fig. 2 we show the RMSE of f versus 6 € [-0.5,0.5]
for ¢ = 0,7/3, —2n/3 and n/2. In this test we fix the max-
imum bin to be m = 2, set SNR = 20dB and implement the
algorithm using QO = 4. We can find from the figure that the
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Fig. 2. RMSE of f obtained by the proposed method versus &
under various ¢.

RMSE of f keeps tracking the CRLB for all ¢. Fig. 3 shows
RMSE of f versus ¢ when f = 0.03 and SNR = 20dB. Be-
sides CRLB, we also plot the results obtained from the state-
of-art time domain method Matrix Pencil [5] and the recently
proposed sin®(n) windowing method [10] (the Sine Window
method). For Matrix Pencil, the pencil parameter is set to
L = |N/3] and for the Sine Window method, we set the win-
dow order to be @ = 1. We find that the proposed algorithm
has the best performance that is extremely close to the CRLB
from ¢ € [-m, ] while different levels of gaps between the
RMSE of f and ¢ and the CRLB are exhibited by the other
two methods. Notice that in Fig. 3(c) the RMSE of all meth-
ods exhibits a sharp jump near ¢ = +x, which results from the
phase wrapping effect.

Finally we examine the RMSE versus SNR. In this test the
proposed method is still compared with CRLB, Matrix Pencil
and the Sine Window methods. The processing parameters
of the Matrix Pencil and the Sine Window methods are main-
tained the same as the previous test. Figs. 4 to 6 show RMSE
of f, @ and ¢ when f = 0.1 and ¢ = n/4. It is observed that
when Q = 2, the RMSE of the proposed method sits on the
CRLB when SNR > 4dB. Meanwhile, the proposed method
has considerably better performance than the Sine Window
method and also slightly outperforms the Matrix Pencil for
frequency and phase estimates when SNR > 4dB. Fig. 7
shows the RMSE of f when f = 0.02 and ¢ = 7/3. As
expected based on the results in Fig. 1, the proposed algo-
rithm requires more iterations for unbiased performance and
the RMSE sits on the CRLB when Q = 4. The RMSE plots
of amplitude and phase estimates exhibit similar behaviour to
the frequency estimate and therefore are not shown here due
to space limitations.

4. CONCLUSION

We proposed in this paper an iterative algorithm for estimat-
ing the frequency, amplitude and phase of a real sinusoidal
signal in additive Gaussian noise. The novel algorithm is ex-
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Fig. 3. RMSE of £, a and ¢ versus ¢ when SNR= 20dB.
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Fig. 4. RMSE of f versus SNR when f = 0.1 and ¢ = /4.

tended from the frequency estimator for a single complex ex-
ponential, developed by Aboutanios and Mulgrew (the A&M
algorithm), which is based on interpolation on Fourier co-
efficients. The novel method iteratively estimates the fre-
quency by combining the interpolation function of the A&M
algorithm with a leakage subtraction scheme. Simulation re-
sults verified that the proposed method is capable of obtaining
RMSE that is extremely close to the CRLB.
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