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ABSTRACT

The uncertainty principle states that a signal cannot be lo-
calized both in time and frequency. With the aim of extending
this result to signals on graphs, Agaskar & Lu introduce no-
tions of graph and spectral spreads. They show that a graph
uncertainty principle holds for some families of unweighted
graphs. This principle states that a signal cannot be simulta-
neously localized both in graph and spectral domains. In this
paper, we aim to extend their work to weighted graphs. We
show that a naive extension of their definitions leads to incon-
sistent results such as discontinuity of the graph spread when
regarded as a function of the graph structure. To circumvent
this problem, we propose another definition of graph spread
that relies on an inverse similarity matrix. We also discuss the
choice of the distance function that appears in this definition.
Finally, we compute and plot uncertainty curves for families
of weighted graphs.

Index Terms— Signal processing on graphs, uncertainty
principle, weighted graphs.

1. INTRODUCTION

In classical signal processing holds an uncertainty principle
stating that a signal cannot be localized both in time and fre-
quency domains [1]. This tradeoff is defined by the following
equation

∆2
t∆2

ω ≥
1

4
(1)

in which ∆2
t is the time spread of the signal and ∆2

ω its fre-
quency spread.

Graph signal processing [2] is a generalization of classi-
cal Fourier analysis in which the support for the signal is not
necessarily a uniform sampling in time but may be a more
complex structure, represented as a graph. This emerging do-
main has received a lot of interest recently [3–5] and has been
applied to fields such as image denoising [2] and social net-
works [6].

∗This work was supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC
grant agreement n◦ 290901.

In the context of signal processing on graphs, [7] intro-
duces a spectral graph uncertainty principle analog to (1),
stating that a signal on a graph cannot be localized both in the
graph domain and in the spectral domain. For a given signal,
the authors propose notions of graph spread around a node
u0, that we denote by ∆2

G,u0
, and spectral spread that we de-

note by ∆2
s. They show that for a fixed node u0 and any signal

x on a graph, (∆2
G,u0

(x),∆2
s(x)) is higher than a certain curve

called uncertainty curve. The authors then plot this curve for
some particular unweighted graphs for which an equation can
be determined, and propose an efficient algorithm to estimate
it for any unweighted graph.

In this paper, we aim to extend the results of [7] to
weighted graphs. We first review the uncertainty principle
for unweighted graphs in Section 2. Then, we show in Sec-
tion 3 that a naive use of the method introduced in [7] leads
to inconsistent results when applied to weighted graphs, and
propose a new definition for the graph spread. Additionally,
we discuss in Section 4 the choice of the distance function
that appears in our definition of graph spread. Finally, in
Section 5, we use our definition to plot uncertainty curves for
some weighted graphs, using various distance functions, and
conclude in Section 6.

2. UNCERTAINTY PRINCIPLE FOR UNWEIGHTED
GRAPHS

2.1. Context and definitions

In this document, we consider a connected, simple graph G =
(V, E ,W) composed of a set of |V| = N nodes, a set of edges
E , and a matrix W. Without loss of generality, we label the
nodes using integers (i.e V = {1 . . . N}). In the definition
of G, W is a symmetric matrix of real values such that Wu,v

denotes the weight associated with edge (u, v) ∈ E . In the
particular case of unweighted graphs, W is the binary adja-
cency matrix of G.

A signal x on a graph G is a set of real values associated
with the nodes of V . Mathematically, x = {x(1) . . . x(N)} is
a vector of RN . Figure 1 depicts an example of graph carrying
a signal.

A signal x is said to be smooth on a graph G if nearby

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 1511



−1

0

1

Fig. 1: Example of graph carrying a signal x. The value of x
associated with each node is described by a color according
to the given scale.

nodes carry similar values of signal. Such a measure of
smoothness is given by the discrete p-Dirichlet form [2] of
the signal:

SG,p(x) , 1
p

∑
u∈V

( ∑
v∈V s.t. (u, v)∈E

Wu,v(x(v)− x(u))p

) 1
p

. (2)

A smooth signal is associated with a low SG,p(x) value. In
particular, SG,p(x) = 0 if and only if x is constant.

When interpreting the significance of G with respect to
a signal x, (2) gives us that W is analogous to a similarity
between nodes, with the noticeable exception of Wu,u = 0.
More generally, a zero value in W indicates the absence of an
edge in G. As a consequence E is redundant with W and can
be dropped from the definition of G.

The normalized Laplacian ŁW of W [8] is a difference
operator analogous to the Laplacian operator arising for ex-
ample in the study of heat diffusion, wave propagation, and
harmonic analysis. It is defined by

ŁW , I− D−
1
2 WD−

1
2 (3)

where D is the diagonal matrix of nodes degrees. Since D
and W are both symmetric real matrices, ŁW can be diago-
nalized and described by its orthonormal eigenvectors XŁW =
(f1 . . .fN ) and associated eigenvalues ΛŁW = (λ1 ≤ · · · ≤
λN ).

2.2. Notions of spreads for unweighted graphs

The notions of graph and spectral spreads introduced in this
paper are an extension of [7]. In the following paragraphs we
recall their definitions.

The graph spread ∆2
G,u0

(x) of a signal x around a given
node u0 is defined by

∆2
G,u0

(x) ,
1

‖x‖22

∑
u∈V

d2
geo(W)(u0, u)x(u)2 (4)

where x(u) is the value of x at node u, and d2
geo(W)(u0, u) is

the squared geodesic distance – i.e the squared length of the
shortest path – between u0 and u using weights matrix W.
Informally, this definition of ∆2

G,u0
(x) quantifies the distance

from u0 to signal x. It allows us to introduce a notion of

locality of the signal in G: the smaller the graph spread is, the
more x is concentrated around u0.

The spectral spread ∆2
s(x) of x is defined by

∆2
s(x) ,

1

‖x‖22

N∑
n=1

λnx̂
2
n (5)

where x̂ = (x̂1 . . . x̂N ) , (f>1 x . . .f>Nx) is the graph Fourier
transform [2] of x. Note that ∆2

s is minimized for a signal hav-
ing all its energy on frequency λ = 0. This situation occurs
when a signal has been inifinitely diffused on a non-bipartite
graph using the diffusion matrix T = D−

1
2 WD−

1
2 . As a mat-

ter of fact, due to the property that the eigenvalues of T are all
in [−1; 1], with exactly one equal to 1, and due to the defini-
tion of ŁW, an inifinitely diffused signal has all its energy on
the smallest eigenvalue of ŁW.

One can show that for any signal x on an unweighted
graph G, there exists a relation between (4) and (5) such that
any pair (∆2

G,u0
(x),∆2

s(x)) is constrained from below by a
certain curve γu0

. Figure 2 depicts the uncertainty curve for
some chosen graphs of 100 nodes. Additional examples of
uncertainty curves are proposed in [7].
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Fig. 2: Examples of uncertainty curves for some unweighted
graphs of 100 nodes. For the star graph, the middle node (i.e
the node connected to all others) is chosen as u0.

It is shown in [7] that any uncertainty curve intersects
the horizontal axis at exactly one location (1, 0) obtained
for a signal x localized at node u0. Moreover, the curve
reaches a spectral spread of 0 for x = f1 [7]. In this
case, the associated graph spread is equal to f>1 P2f1, where
P = diag

u∈V
(dgeo(W)(u0, u)).

In the remainder of this document, we consider unit-norm
signals to simplify the reasoning. Therefore, (4) becomes

∆2
G,u0

(x) ,
∑
u∈V

d2
geo(W)(u0, u)x(u)2 (6)

and (5) becomes

∆2
s(x) ,

N∑
n=1

λnx̂
2
n . (7)
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3. TOWARDS AN UNCERTAINTY PRINCIPLE FOR
WEIGHTED GRAPHS

In this section we aim to extend the definitions of [7] to
weighted graphs. First, we show that a naive use of (6)
leads to inconsistent results such as discontinuity of the graph
spread when regarded as a function of G.

3.1. Discontinuity of the graph spread for weighted
graphs

Let us consider the graph G in Figure 3 in which u0 is fixed
and x is equally distributed among the nodes.

u0 u

v
1

ε

2

(a)


u0 u v

u0 0 ε 1
u ε 0 2
v 1 2 0


(b)

Fig. 3: Example weighted graph (a) for which we want
to compute the uncertainty curve, and associated matrix of
weights (b). We consider a signal x equally shared among the
nodes (i.e ∀w ∈ V : x(w) = 1√

3
).

Using (6), we obtain that ∆2
G,u0

(x) = d2
geo(W)(u0, u)x(u)2+

d2
geo(W)(u0, v)x(v)2 = ε2+1

3 −→
ε→0

1
3 . It seems reasonable to

expect that as ε tends to 0, ∆2
G,u0

tends to the limit case where
ε = 0. In particular, ∆2

G,u0
should be robust to measurement

noise in scenarios where W is not perfectly known.
Figure 4 depicts the matrix of weights associated with the

limit graph G′.

u0 u

v
1 2

(a)


u0 u v

u0 0 0 1
u 0 0 2
v 1 2 0


(b)

Fig. 4: Matrix of weights (b) representing the limit of Fig-
ure 3b when ε −→ 0, and associated graph G′ (a). The edge
(u0, u) has been removed since Wu0,u = 0.

Again, we use (6) to compute the graph spread for G′
around u0. With this graph, we obtain that ∆2

G′,u0
(x) = 10

3 ,
leading to a discontinuity of G 7→ ∆2

G,u0
.

Remark: Looking closely at the above mentioned exam-
ple, we point out that there is a misuse of W in the definition
of ∆2

G,u0
. As a matter of fact (2) gives us that W is a simi-

larity matrix, whereas (6) uses it as a distance matrix. More
generally we expect the graph spread to grow with the dis-
tance between nodes in a graph, that is to say as the similarity
decreases. In the next subsection we propose a generic frame-

work for a rectified definition of the graph spread in the case
of weighted graphs.

3.2. Expected behavior of a graph spread

In order to define a new notion of graph spread that does not
lead to unexpected behaviors as in Section 3.1, we present
some desired properties on ∆2

G,u0
.

We expect from a graph spread notion that it captures the
locality of a signal x in the graph domain. In other words, for
a fixed node u0, the graph spread around u0 should measure
the extent to which the signal x is concentrated around u0. To
achieve this, we would like to ensure the following properties:
• ∆2

G,u0
(x) should be small if x is localized around u0, and

should increase as the distance between u0 and the nodes
carrying x increases.

• Additionally, the only situation leading to ∆2
G,u0

(x) = 0
should be when the signal is entirely localized on u0.

• A third desired property is that the graph spread should
be similar for graphs with similar weights (continuity of
G 7→ ∆2

G,u0
).

Moreover it appears to us that the choice of the geodesic
distance in (6) is arbitrary. In order to be compliant with the
previously enumerated properties, we characterize the class
of acceptable functions d:
a) ∀u, v ∈ V : d(u, v) ≥ 0.

b) ∀u, v ∈ V : d(u, v) = 0⇔ u = v.

c) d is continuous, and if we increase Wu,v for a single edge
(u, v), then ∀u′, v′ ∈ V : d(u′, v′) does not increase.
Remark: The geodesic distance d2

geo(W) based on W is not
compliant with c) (not continuous and increasing with W).

4. EXAMPLES OF COMPLIANT DISTANCES FOR
GRAPH SPREAD

In this section we present two choices of distances compli-
ant with the previously introduced properties. Other distances
can be used, such as the resistance distance [9] or the com-
mute time distance [10]. We choose to focus on two simpler
examples for the sake of clarity.

4.1. Inverse similarity matrix

The distance introduced in this subsection is a simple recti-
fied version of (6) and is compatible with it in the case of
unweighted graphs. We introduce a new matrix S̄:

∀u, v ∈ V : S̄u,v ,


∞ if Wu,v = 0
0 if u = v

1
Wu,v

otherwise
. (8)

We propose to use it instead of W in (6).
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Remark: The choice of taking the inverse is arbitrary and
could be replaced by other functions. Basically, any decreas-
ing distance function associating an infinite distance to un-
connected pairs of nodes can be used. Standard alternatives
are Gaussian kernels, as shown later in Section 5.2. In some
cases weighted similarity graphs are constructed from dis-
tance graphs and in such cases it appears more natural to use
the latter directly instead of estimating it back from W. Some
examples of such graphs are given in the next section.

We now show that the squared geodesic distance using
S̄, d2

geo(S̄)
, is compliant with the three properties enounced in

Section 3.2:
a) is trivially true, since d2

geo(S̄)
(u, v) features a square.

b) is ensured for any couple of nodes by construction of S̄.

c) is in most cases trivial. The only concern is when an edge
is removed from G. Such a scenario occurs in the case
where the similarity between two nodes u and v becomes
zero. By definition of S̄, this corresponds to a distance
between u and v that diverges to infinity. It is obvious
that eventually the shortest paths of S̄ do not include this
edge.
With this function, the definition of graph spread in (6)

now becomes

∆2
G,u0

(x) ,
∑
u∈V

d2
geo(S̄)(u0, u)x(u)2 . (9)

4.2. Diffusion distance

Another distance function we study in this paper is the dif-
fusion distance, as defined in [11]. Given a graph adjacency
matrix W and its associated (non-normalized) Laplacian ma-
trix LW [8], ddiff is defined in matrix form for some constant
parameter α as follows:

∀u, v ∈ V : ddiff (u, v) , ‖(I + αLW)−1(xu − xv)‖ (10)

where xu is a unit-norm signal having only one non-zero
value on node u.

One can show that ddiff verifies the three desired prop-
erties presented in Section 3.2. In the remaining of the docu-
ment, we set α = 1 and use the l2 norm.

5. RESULTS FOR CLASSICAL WEIGHTED GRAPHS

In this section we introduce several classical weighted graphs
and plot their uncertainty curves considering both inverse
similarity matrix and diffusion distance. Curves are plotted
using the Sandwich algorithm introduced in [7]. By com-
paring the resulting curves to known uncertainty curves [7]
obtained for graphs such as the ring or star graphs, one can
evaluate the amount of uncertainty associated to the graph
under study.

5.1. Random graph

We call random graph a graph which adjacency symmetric
matrix W is such that each non-null coordinate Wu,v is drawn
uniformly between 0 and 1. Using the previously introduced
distance functions, we plot in Figure 5 the uncertainty curves
for such families of graphs. The curves are normalized such
that the graph spread associated with ∆2

s(x) = 0 is at most
equal to 1 for each distance function used.
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Fig. 5: Examples of uncertainty curves for some randomly
weighted families of graphs of 10 nodes. The curves are com-
puted for the two distance functions dgeo(S̄) and ddiff . Mean
uncertainty curves for 100 random weights.

It is interesting to notice that the choice of the distance
does not impact the relative order of the curves. Additionally,
the intersection between the uncertainty curves associated to
the star and complete graphs is kept when switching the dis-
tance function. The main difference is the smoothness of the
curves. Using ddiff tends to produce uncertainty curves that
are more regular than when using dgeo(S̄).

5.2. Gaussian kernel

We consider graphs obtained using a Gaussian kernel. The
idea is to build a distance graph and to apply a Gaussian ker-
nel to all weights to obtain W. The Gaussian kernel has two
parameters α and β and is defined as follows:

g : x 7→ α exp
(
−βx2

)
. (11)

We consider a set S of N sensors uniformly distributed in
a 1×1 square. We define a symmetric matrix E as follows. Fix
some radius r such that if two sensors u and v are at Euclidean
distance deuc(u, v) less than r, then Eu,v = deuc(u,v)

max
u′,v′∈V

deuc(u′,v′)

and Eu,v = 0 otherwise. W is then defined by applying g to
each cell of E.

Figure 6 depicts the mean uncertainty curves for random
geometric graphs. When computing the uncertainty curve us-
ing the squared geodesic distance d2

geo(E), we directly use the
matrix of Euclidean distances E, and do not retrieve it from
W (see remark in Section 4.1). The curves are normalized so
that no value of ∆2

G,u0
exceeds 1 for each distance function.
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Fig. 6: Uncertainty curves for random geometric graphs of
10 nodes. Parameters (α, β, r) are respectively fixed to
(1, 1, 0.3). Mean uncertainty curves for 100 random graphs.

Additionally, we apply the same Gaussian kernel to semi-
localized graphs. We use the same graph as presented in [2]
(Example 2). Such a graph is obtained by connecting pix-
els of the 32× 32 cameraman image to their eight neighbors,
weighting connections using g over the difference of intensity
of pixels to obtain W. This method for constructing graphs
for images has been previously used for example in [12]. Fig-
ure 7a depicts the picture from which the graph is extracted.
Figure 7b shows the associated uncertainty curves using the
distances dgeo(S̄)

1 and ddiff .

(a)
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Fig. 7: Computation of the normalized uncertainty curves (b)
associated to the image (a), for the introduced distance func-
tions. Parameters (α, β) are respectively fixed to (1, 1).

6. CONCLUSION

In this work, we have extended the notion of uncertainty on
graphs introduced in [7] to weighted graphs, and pointed out
important properties of the distance function used in the def-
inition of graph spread. We have shown the applicability of
our work on classical families of graphs, as well as on semi-
localized graphs that are encountered in real-life use-cases.

1Contrary to the study of random geometric graphs, we do not directly
use a matrix of distances D associated to the difference of pixels intensity,
but retreive S̄ from W using (8). As a matter of fact, two adjacent pixels
with identical intensity result in a distance of 0 if using D, and would cause
the discontinuity problem previously introduced. A solution to cope with
this problem is to add an ε noise to all edge weights. However, this leads to
hard to visualize curves. Therefore, for the sake of comprehension, we use
d2
geo(S̄)

and not d2
geo(D)

.

A direction of our future work will focus on side aspects,
such as determining a way to efficiently choose the node used
as u0 in the computation of ∆2

G,u0
to perform better com-

parisons of uncertainty curves. We will also investigate the
properties linked to the uncertainty curve of a given graph.
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