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ABSTRACT
We consider multichannel sparse recovery problem where the
objective is to find good recovery of jointly sparse unknown
signal vectors from the given multiple measurement vectors
which are different linear combinations of the same known el-
ementary vectors. Many popular greedy or convex algorithms
perform poorly under non-Gaussian heavy-tailed noise condi-
tions or in the face of outliers. In this paper, we propose the
usage of mixed !p,q norms on data fidelity (residual matrix)
term and the conventional !0,2-norm constraint on the signal
matrix to promote row-sparsity. We devise a greedy pursuit
algorithm based on simultaneous normalized iterative hard
thresholding (SNIHT) algorithm. Simulation studies high-
light the effectiveness of the proposed approaches to cope
with different noise environments (i.i.d., row i.i.d, etc) and
outliers. Usefulness of the methods are illustrated in source
localization application with sensor arrays.

Index Terms— multichannel sparse recovery, com-
pressed sensing, robustness, iterative hard thresholding

1. INTRODUCTION

In the multiple measurement vector (MMV) model, a single
measurement matrix is utilized to obtain multiple measure-
ment vectors, i.e., yi = Φxi + ei, i = 1, . . . , Q where Φ is
theM ×N known measurement matrix and ei are the (unob-
served) random noise vectors. Typically there are more col-
umn vectors φi than row vectors φ(j), i.e., M < N (under-
determined linear model). It is still possible to recover the
unknown signal vectors xi, i = 1, . . . , Q by assuming that
signals are sparse, i.e., some of the elements are zero. In
matrix form, the MMV model reads Y = ΦX + E, where
Y = (y1 · · · yQ) ∈ CM×Q, X = (x1 · · · xQ) ∈ CN×Q

and E = (e1 · · · eQ) ∈ CM×Q collect the measurement, the
signal and the error vectors, respectively. When Q = 1, the
model reduces to standard compressed sensing (CS) model
[1]. Then, rather than recovering the sparse/compressible tar-
get signals xi separately using standard CS reconstruction al-
gorithms, one attempts to simultaneously (jointly) recover all
signals. The key assumption is that locations of nonzero val-
ues primarily coincide, i.e., signal matrix X is K rowsparse.
Joint estimation can lead both to computational advantages

and increased reconstruction accuracy [1–6]. The objective of
multichannel sparse recovery problem is finding a row sparse
approximation of the signal matrix X based on knowledge
of Y, the measurement matrix Φ and the sparsity level K .
Applications include EEG/MEG [1] and direction-of-arrival
(DOA) estimation of sources in array processing [7].

Most greedy CS reconstruction algorithms have been
extended for solving MMV problems. These methods,
such as simultaneous normalized iterative hard threshold-
ing (SNIHT) algorithm [6] are guaranteed to perform very
well provided that suitable conditions (e.g., incoherence of
Φ and non impulsive noise conditions) are met. The derived
(worst case) recovery bounds depend linearly on ‖E‖2, so the
methods are not guaranteed to provide accurate reconstruc-
tion/approximation under heavy-tailed non-Gaussian noise.
In this paper, we consider different !p,q mixed norms on data
fidelity (residual matrix) and devise a greedy SNIHT algo-
rithm for obtaining a sparse solution. We focus on mixed
!1 norms as they can provide robust solutions. As will be
shown in the sequel, these methods are then based on spatial
signs [8] of the residuals and therefore are nonparametric in
nature. For an alternative robust approach, see [9].

The paper is organized as follows. In Section 2 we for-
mulate a mixed-norm constrained objective function for the
MMV problem and motivate the usage of !1-norm or the
mixed !2,1- and !1,2-norms. In Section 3 we formulate the
greedy SNIHT algorithm whereas Section 4 provides sim-
ulation examples illustrating the improved accuracy of the
proposed methods in various noise conditions and signal
to noise ratio (SNR) settings. Finally, effectiveness of the
methods are illustrated in source localization application with
sensor arrays in Section 5.

Notations. Let [n] denote the set {1, . . . , n} for n ∈ N+.
For a matrix A ∈ CM×N and an index set Γ of cardinal-
ity |Γ| = K , we denote by AΓ (resp. A(Γ)) the M × K
(resp. K × N ) matrix restricted to the columns (resp. rows)
of A indexed by the set Γ. The ith column vector of A is
denoted by ai and the hermitian transpose of the ith row vec-
tor of A by a(i), A = (a1 · · · aN ) = (a(1) · · · a(M))

H.
The row-support ofX ∈ CN×Q is the index set of rows con-
taining non-zero elements: rsupp(X) = {i ∈ [N ] : xij $=
0 for some j}. For p, q ∈ [1,∞), the mixed !p,q norm [10] of
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X ∈ CN×Q is defined as

‖X‖p,q =

(

∑

i

(

∑

j

|xij |
p

)q/p)1/q

=

(

∑

i

‖x(i)‖
q
p

)1/q

.

The mixed norms generalize the usual matrix p-norms: if p =
q, then ‖X‖p,p = ‖X‖p. The !2-norm ‖ · ‖2 is called the
Frobenius norm and will be denoted shortly as ‖ · ‖. In the
same spirit, the usual Euclidean norm on vectors is denoted
shortly as ‖ · ‖. The row-!0 quasi-norm of a signal matrix X
is the number of nonzero rows, i.e., ‖X‖0 = | rsupp(X)|.
The matrix X is then said to be K-rowsparse if ‖X‖0 ≤ K .
We use HK(·) to denote the hard thresholding operator: for
a matrix X ∈ CN×Q, HK(X) retains the elements of the K
rows of X that possess largest !2-norms and set elements of
the other rows to zero. Notation X|Γ refers to a sparsified
version of X such that the entries in the rows indexed by set
Γ remain unchanged while all other rows have all entries set
to 0.

2. ROBUST MIXED NORMMINIMIZATION

Our objective is to recover K-rowsparse X in the MMV
model. For this purpose, we consider the following con-
strained optimization problem:

min
X

cp,q‖Y −ΦX‖qp,q subject to ‖X‖0 ≤ K, (Pp,q)

where cp,q is an irrelevant constant used for making nota-
tions compact. For p = q, the problem reduces to conven-
tional !p-norm minimization of the residual matrixR = Y−
ΦX ∈ CM×Q under rowsparsity constraint on X. The well-
known problem with !2-norm minimization is that it gives
a very small weight on small residuals and a strong weight
on large residuals, implying that even a single large outlier
can have a large influence on the obtained solution. For ro-
bustness, one should utilize !1 in mixed norms since it gives
larger weights on small residuals and less weight on large
residuals. In this paper we consider (Pp,q) in the cases that
p, q ∈ {1, 2}. The problem (Pp,q) is combinatorial (NP-hard).
Hence suboptimal reduced complexity reconstruction algo-
rithms have been proposed. These can be roughly divided into
two classes: convex-relaxation algorithms (e.g., [3,7,10]) and
greedy pursuit (e.g., [2, 6]) algorithms. In this paper, we de-
vise a greedy simultaneous NIHT (SNIHT) algorithm for the
problems (P1,1) and (P2,1). The case (P1,2) is excluded due
to the lack of space, but our approach and discussion straight-
forwardly extends for this mixed !1 norm as well.

In (P1,1) problem, one aims to minimize ‖Y −ΦX‖1 =
∑

i

∑

j |yij − φH
(i)xj | under sparsity constraint, so the solu-

tion can be viewed as a sparse multivariate least absolute devi-
ation (LAD) regression estimator. The LAD regression (in the
real-valued overdetermined linear regression) is well-known
to offer robust solution with bounded influence function. In

the complex case, this approach can be considered optimal
when the error terms eij are i.i.d. with (circular) complex
generalized Gaussian (GG) distribution [11, Example 4] with
exponent s = 1/2. It is important to realize that minimization
of !p-norms in (Pp,p) implicitly assumes i.i.d.’ness of the er-
ror terms. Since the measurement matrixY is in many appli-
cations a space× timematrix as in medical imaging or sensor
array applications, the i.i.d. assumption of the error terms in
time/space is often not valid. The benefit of mixed !1-norms,
such as !2,1 and !1,2 considered here is that they introduce
couplings [10] between the coefficients and offer robustness
in case of dependent heavy-tailed errors or outliers. When the
errors terms have dependencies in time and/or space, then !2,1
and !1,2 minimization can offer advantages over !1 or !2 norm
approaches. As will be shown later, the usage of !1-norm or
the mixed !1-norms lead to non-parametric approaches that
are based on the concept of spatial sign function [8] which in
the scalar case (x ∈ C) is defined as

sign(x) =

{

x/|x|, for x $= 0

0, for x = 0
. (1)

In the vector case, sign(x) = ‖x‖−1x,= 0 for x $= 0,= 0.

3. MIXED NORM SNIHT ALGORITHM

Iterative hard thresholding is a projected gradient descent
method that is known to offer efficient and scalable solution
for K-sparse approximation problem [12]. The normalized
IHT (NIHT) method updates the estimate of X by taking
steps towards the direction of the negative gradient followed
by projection onto the constrained space. In our multichannel
sparse recovery problem, at (n + 1)th iteration the SNIHT
update is

Xn+1 = HK

(

Xn + µn+1ΦHψp,q(Y −ΦXn)
)

where ψp,q(R) = ∇R∗‖R‖qp,q is the complex matrix deriva-
tive [13] with respect to (w.r.t.) R∗, µn+1 > 0 is the stepsize
for the current iteration and p, q ∈ {1, 2}. For !2- and !1-
norms the derivatives are easily shown to be

ψ2,2(R) = R and ψ1,1(R) = sign(R)

respectively, where notation sign(R) refers to element-wise
application of the spatial sign function (1), i.e., [sign(R)]ij =
sign(rij). For (2, 1) mixed norm, we obtain

ψ2,1(R) =
(

sign(r(1)) · · · sign(r(M))
)H

,

that is, the vector spatial sign function is applied row-wise
to the residual matrix R = (r(1) · · · r(M))

H. Table 1 pro-
vides the pseudo-code of the greedy SNIHT algorithm for
the problem (Pp,q), which we call SNIHT(p, q) algorithm for
short. Note that SNIHT(2, 2) corresponds to the conventional
SNIHT studied in [6] and in [12] forQ = 1 case.
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Algorithm 1: SNIHT(p, q) algorithm
input :Y, Φ, sparsityK , mixed norm indices (p, q)
output : (Xn+1,Γn+1) estimates ofX and rsupp(X)
initialize:X0 = 0, µ0 = 0, Γ0 = ∅, n = 0.

1 Γ0 = rsupp
(

HK(ΦHψp,q(Y))
)

while halting criterion false do
2 Rn

ψ = ψp,q(Y −ΦXn)

3 Gn = ΦHRn
ψ

4 µn+1 = CompStepsize(Φ,Gn,Γn, µn, p, q)
5 Xn+1 = HK(Xn + µn+1Gn)
6 Γn+1 = rsupp(Xn+1)
7 n = n+ 1
end

We now describe the CompStepsize function which
computes the stepsize update µn+1 in Step 4. Following the
approach in [12], assuming that we have identified the correct
support at nth iteration, then we may look for a stepsize up-
date µn+1 as the minimizer of ‖Y−ΦX‖qp,q for the gradient
ascent direction Xn + µGn|Γn . Thus we find µ > 0 as the
minimizer of the convex function

∥

∥Y −Φ
(

Xn + µGn|Γn

)
∥

∥

q

p,q
= ‖Rn − µBn‖qp,q (2)

whereRn = Y −ΦXn and Bn = ΦΓnG(Γn) When p = q
this reduces to minimizing a simple linear regression estima-
tion problem, minµ ‖r − µb‖pp, where the response is r =
vec(Rn) and the predictor is b = vec(Bn). Thus when using
p = q = 2 as in conventional SNIHT [6], the minimizer of
(2) is easily found to be µn+1 = ‖Gn

(Γn)‖
2/‖ΦΓnGn

(Γn)‖
2.

However, for the robust estimators that we are interested in,
i.e., when using (p, q) = (1, 1) and (p, q) = (2, 1), a mini-
mizer of (2) can not be found in closed-form. In the (p, q) =
(1, 1) case, it is easy to show that the solution µ verfies the
following fixed point (FP) equation µ = H(µ), where

H(µ) =
(

∑

i,j

|r̃ij |
−1|bij |

2
)−1∑

i,j

|r̃ij |
−1Re(b∗ijrij),

and R̃ = Rn − µBn = (r̃ij) depends also on the unknown
µ. Then, instead of choosing the next update µn+1 as the
minimizer of (2) which could be found by running the FP it-
erations µi = H(µi+1) for i = 0, 1, . . . until convergence
(with initial value µ0 > 0), we use a 1-step FP iterate which
corresponds to a single iteration with initial value of iteration
given by the previous stepsize µn. In other words, in Step 4,
we set µn+1 = H(µn). In our simulation studies we noticed
that this 1-step FP iterate often gave a very good approxima-
tion of the true solution (within 3 decimal accuracy). In case
we use (p, q) = (2, 1), it is easy to show that the solution µ
verifies the FP equation µ = H"(µ), where

H"(µ) =
(

∑

i

‖r̃(i)‖
−1‖b(i)‖

2
)−1∑

i

‖r̃(i)‖
−1Re(bH

(i)r(i))
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Fig. 1. Average MSE of SNIHT(p, q) methods as a function
of SNR in (a) CN (0,σ2) noise and (b) Ct3(0,σ2) noise.

and the same approach, i.e., µn+1 = H"(µn), is used for
computing the stepsize update.

4. SIMULATION STUDIES

Next we illustrate the usefulness of the methods in a vari-
ety of noise environments and SNR levels. Also, the effect
of number of measurement vectors Q on recovery probabil-
ity will be illustrated. The elements of Φ are drawn from
CN (0, 1) distribution and the columns are unit-norm normal-
ized. The coefficients of K non-zero row vectors of X have
equal amplitudes σx = |xij | = 1 ∀i ∈ Γ, j = 1, . . . , Q and
uniform phases, i.e., Arg(xij) ∼ Unif(0, 2π). The support
Γ = supp(X) is randomly chosen from {1, . . . , N} without
replacement for each trial. We define the (generalized) sig-
nal to noise ratio (SNR) as SNR(σ) = 10 log10(σ

2
x/σ

2) =
−20 log10 σ which depends on the scale parameter σ of the
error distribution. For robustness purposes, we will study the
performance in i.i.d. complex circular t-distributed noise with
ν degrees of freedom (d.o.f.), eij ∼ Ctν(0,σ2), when ν ≤ 5
and the scale parameter is σ2 = MedFe

(|eij |2). This is an ex-
ample of a heavy-tailed distributionwith ν = 1 corresponding
to Cauchy distribution. Also note that at the limit ν → ∞ one
obtains the complex Gaussian distribution.

As performance measures of sparse signal recovery, we
use both the (observed) mean squared error MSE(X̂) =
1

LQ

∑L
$=1

∥

∥X̂[$] − X[$]
∥

∥

2 and the empirical probability of
exact recovery, PER ! 1

L

∑L
$=1 I

(

Γ̂[$] = Γ[$]
)

, where I(·)

denotes the indicator function, X̂[$] and Γ̂[$] = rsupp(X̂[$])
denote the estimate of theK-sparse signalX[$] and the signal
support Γ[$] for the !th Monte Carlo (MC) trial, respectively.
In all simulation settings described below, all the reporeted
figures are averages over L = 2000 MC trials, the length
of the signal is N = 512, the number of measurements is
M = 256, and the sparsity level is K = 8. The number of
measurement vectors is Q = 16 unless otherwise stated.

Figure 1(a) depicts the MSE as a function of SNR in
i.i.d. circular Gaussian noise, eij ∼ CN (0,σ2), where
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SNR (dB)
2 4 6 8 10 12 14 16

SNIHT(2, 2) 0 0 .6 .61 .94 .99 .99 1.0
SNIHT(1, 1) 0 .25 .91 1.0 1.0 1.0 1.0 1.0
SNIHT(2, 1) 0 .02 .38 .96 1.0 1.0 1.0 1.0

Table 1. PER rates in Ct3(0,σ) distributed noise as a func-
tion of SNR (dB). System parameters were (M,N,K,Q) =
(256, 512, 8, 16).

σ2 = E[|eij |2]. As expected, the conventional SNIHT(2, 2)
has the best performance, but SNIHT(2, 1) suffers a neg-
ligible 0.07 dB loss, whereas SNIHT(1, 1) attain 1.07 dB
performance loss. Note that SNR = 6 dB is the cutline for
which all methods had full PER rate (= 1). From 4 dB the
PER rate declines and reaches 0 at SNR = 0 dB for all of the
methods.

Next we study the performance in t-distributed noise with
ν = 3 d.o.f. Note that Ct3(0,σ) distribution has a finite
variance so we can expect that also SNIHT(2, 2) can still
work reliably in this setting. Figure 1(b) which depict the
MSE vs SNR illustrates severe degradation in reconstruction
performance for the SNIHT(2, 2). This is further illustrated
in Table 1 which provides the PER rates for the considered
SNIHT(p, q)methods. Note that the decline of PER rate starts
much earlier for the conventional SNIHT than for the robust
methods.

Figure 2(a) depicts theMSE of themethods in t-distributed
noise of SNR(σ) = 10 dB and d.o.f. ν varying in ν ∈ [1, 5].
We observe that SNIHT(1, 1) has the best performance as it
retains low MSE for all values of ν. This is in deep contrast
to SNIHT(2, 2)which starts an exponential increase at ν ≤ 3,
reaching sky-high MSE levels in Cauchy noise (ν = 1). The
PER rates in Table 2 further illustrates the remarkable per-
formance of the robust methods. Note that SNIHT(1, 1) is
able to maintain full PER rates for all values of ν, whereas
SNIHT(2, 2) fails completely for ν < 3.

The usefulness of joint recovery becomes more pro-
nounced at low SNR’s, where multiple measurements can
dramatically improve on the recovery by exploiting the joint
information. This is illustrated in our next simulation set up,
where d.o.f. ν of the t-distributed noise is fixed at ν = 3
and the SNR is 10 dB. Figure 2(b) depicts the PER rates for
increasing number of measurement vectors Q. As can be
seen, the PER rate increases as a function of Q from poor
14% (whenQ = 2) to near full 100% recovery (whenQ = 6)
when using SNIHT(1, 1) method. Again, SNIHT(2, 1) is
slightly behind in performance to SNIHT(1, 1). Conven-
tional SNIHT(2, 2) is drastically behind the robust methods,
reaching highest 96.6% rate when Q = 18. This is again in
deep contrast with near 100% PER obtained by SNIHT(1, 1)
method only with Q = 6 samples.
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Fig. 2. (a) MSE of SNIHT(p, q) methods in Ctν(0,σ2) noise
as a function of ν; (b) Empirical PER rates of SNIHT(p, q)
methods as a function of Q in Ct3(0,σ2) noise. In both set-
ting, the SNR was SNR(σ) = 10 dB.

SNIHT Degrees of freedom ν
(p, q) 1 1.25 1.5 1.75 2 3 4 5
(2, 2) 0 0 0 0 .04 .94 .99 1.0
(2, 1) 0 .07 .55 .90 .98 1.0 1.0 1.0
(1, 1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2. PER rates in i.i.d. Ctν(0,σ2) noise for different
d.o.f. ν and SNR(σ) = 10 dB. System parameters were
(M,N,K,Q) = (256, 512, 8, 16).

5. APPLICATIONS TO SOURCE LOCALIZATION

Consider a sensor array consisting ofM sensors that receives
K narrowband incoherent farfield plane-wave sources from a
point source (M > K). At discrete time t, the array output
(snapshot) y(t) ∈ Cm is a weighted linear combination of the
signal waveforms x(t) = (x1(t), . . . , xK(t))$ corrupted by
additive noise e(t) ∈ CM , y(t) = A(θ)x(t) + e(t), where
A = A(θ) is the M × K steering matrix parametrized by
the vector θ = (θ1, . . . , θK)$ of (distinct) unknown DOA’s
of the sources. Each column vector a(θi), called the steering
vector, represents a point in known array manifold a(θ). We
assume that the number of sourcesK is known.

As in [7], we cast the source localization problem as a
multichannel sparse recovery problem as follows. We con-
struct an overcompleteM × N steering matrixA(θ̃), where
θ̃ = (θ̃1, . . . , θ̃N )$ represents a sampling grid of all source
locations of interest. Suppose that θ̃ contains the true DOA’s
θi, i = 1, . . . ,K . In this case the measurement matrix Y =
(

y(t1) · · · y(tQ)
)

∈ CM×Q consisting of snapshots at
time instants t1, . . . , tQ can be exactly modelled as MMV
model in which the signal matrixX ∈ CN×Q isK-rowsparse
matrix, whose K non-zero row vectors correspond to source
signal sequences. Thus finding the DOA’s of the sources is
equivalent to identifying the support Γ = supp(X). Since
the steering matrixA(θ̃) is known, we can use SNIHT meth-
ods to identify the support.
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We assume that K = 2 independent (spatially and tem-
porally) complex circular Gaussian source signals of equal
power σ2

x arrive on uniform linear array (ULA) of M = 20
sensors with half a wavelength inter-element spacing from
DOA’s θ1 = 0o and θ2 = 8o. In this case, the array manifold
is a(θ) = (1, e−π sin(θ), · · · , e−π(M−1) sin(θ))$. The noise
matrixE ∈ CM×Q has i.i.d. row vectors, each row vector e(i)
having complexQ-variate inverse Gaussian compound Gaus-
sian (IG-CG) distribution [14] with shape parameter λ = 0.1
and covariance matrix Cov(e(i)) = IQ. Note that the covari-
ance of the snapshot is Cov(y(ti)) = σ2

xA(θ)A(θ)H + IM ,
so we may use the popular MUSIC method to localize the
sources. In other words, we search for the K = 2 peaks of
the MUSIC pseudospectrum in the grid. We use a uniform
grid θ̃ on [−90, 90] with 2o degree spacing, thus containing
the true DOA’s. In Step 1 of SNIHT(p, q) algorithm, we lo-
cate the K largest peaks of rownorms of ΦHψp,q(Y) instead
of takingΓ0 as indices ofK largest rownorms ofΦHψp,q(Y).

We then identify the support (which gives the DOA esti-
mates) for all the methods over 1000 MC trials and compute
the PER rates and the relative frequency of DOA estimates
in the grid. Full PER rate = 1 implies that the support Γ
correctly identified the true DOA’s in all MC trials. Such a
case is shown in upper plot of Figure 3 for the SNIHT(1, 1)
and SNIHT(2, 1) when the number of snapshots is Q = 50
and the SNR is −10 dB. The PER rates of SNIHT(2, 2) and
MUSIC were considerably lower, 0.81 and 0.73, respectively.
Next we keep other parameters fixed, but decrease the SNR
to -20 dB. In this case, the MUSIC method fails completely
and provides nearly a uniform frequency on the grid. This is
illustrated in lower plot of Figure 3. Note that the proposed
robust methods, SNIHT(1, 1) and SNIHT(2, 1), provide high
peaks on the correct DOA’s. The PER rates of SNIHT(2, 1),
SNIHT(1, 1), SNIHT(2, 2) andMUSIC were 0.70, 0.64, 0.11
and 0.05, respectively. Hence the mixed !1-norm method
SNIHT(2, 1) has the best recovery performance. In conclus-
tion, robust sparse recovery methods can offer considerable
improvements in performance when the measurement envi-
ronment is challenging (low SNR, small Q)
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