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ABSTRACT

Camera-based photoplethysmography is a contactless mean
to assess vital parameters, such as heart rate and respiratory
rate. In the field of camera-based photoplethysmography,
blind source separation (BSS) techniques have been exten-
sively applied to cope with artifacts and noise. Despite their
wide usage, there is no consensus that common BSS ap-
proaches contribute to an improved analysis of camera-based
photoplethysmograms (cbPPG). This contribution compares
previously proposed multispectral BSS techniques to a novel
spatial BSS approach for heart rate extraction from cbPPG.
Our analysis indicates that the application of BSS techniques
not necessarily improves cbPPG’s analysis but signal proper-
ties like the signal-to-noise-ratio should be considered before
applying BSS techniques.

Index Terms— Camera-based Photoplethysmography,
Blind Source Separation, Independent Component Analysis,
Principal Component Analysis, Heart Rate

1. INTRODUCTION

Contact-less acquisition of vital signs allows the implemen-
tation of novel clinical and out-of-hospital applications. Var-
ious systems and techniques for contactless measurements
have been introduced in the last years. Amongst such ap-
proaches, camera-based monitoring is one promising solution
to assess the cardiac pulse.

The acquisition of the cardiac pulse, using near infrared
cameras, was firstly demonstrated by Huelsbusch et al.
2002 [1]. Since then, many researchers have worked with
camera-based photoplethysmography, most often to assess
the heart rate [2–8]. Since the technique is highly sensitive
to artifacts, induced by movements and lightening changes,
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elaborated image and signal processing techniques are re-
quired to make use of the camera-based photoplethysmogram
(cbPPG) under real world conditions.

The application of blind source separation (BSS) algo-
rithms has been highlighted to improve heart rate extraction
from cbPPG recordings. BSS aims at separating the desired
signal content (i.e. cardiac pulse) from noise and artifacts
by means of decorrelation and exploiting statistical indepen-
dence. Principal Component Analysis (PCA) and Indepen-
dent Component Analysis (ICA) are typical BSS techniques
that have been widely applied to cbPPG.

Proposed techniques use segments of different color chan-
nels (typically RGB) extracted from regions of interest (ROI),
typically the face, as input to PCA or JADE ICA [4, 9–14].
FastICA [15] has also been applied to RGB signals [6, 14]
and achieved a slightly better performance in comparison to
other ICA algorithms [6]. Tsouri et al. [16], on the other
hand, used RGB information of a face ROI as input for a
constrained ICA. They successively embedded sines at as-
sumed heart rates as constraint to select the most probable
heart rate. Other researchers have further developed the idea
of multispectral cbPPG with PCA/ICA but have utilized al-
ternatives to RGB, namely combinations of RGB with or-
ange and cyan channels or chrominance based signals, respec-
tively [7, 10, 17, 18].

Besides investigating the impact of using different wave-
lengths, spatial approaches like reducing the face ROI to a
more concise area have been recently addressed in the con-
text of PCA/ICA [6,8,11,14,17,19]. Spatial reduction seeks
to exclude regions that are not supposed to contribute with
useful signals but can introduce distortions like mouth move-
ments during speaking/smiling or blinking eyes [14, 20]. Ap-
proaches described in literature typically rely on a spatial pre-
selection and use multispectral information (RGB) as input to
BSS techniques. However, a monochrome cbPPG, extracted
from the forehead, is used as input for spatio-temporal ICA
in [19]. Wang et al. alternatively addressed spatial reduction
without using face detection. The authors utilized the tem-
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poral behavior of pixel traces to distinguish skin-like areas
showing temporally periodic content from motion-like con-
tent [18].

Despite the frequent multispectral BSS use, there is no
consensus on the benefit of using BSS techniques with multi-
spectral inputs. Kwon et al. described a blurred spectral peak
after applying RGB ICA as well as an increased heart rate
error [12]. Christinaki et al. identified only subtle improve-
ments but similar heart rate errors with/without using RGB
ICA [6]. Feng et al. showed a lack of robustness applying a
standard RGB ICA [8].

One possible reason for BSS techniques’ limitations is
the assumption of a linear mixing process [15] of available
sources in standard PCA/ICA. In particular, the wavelength-
dependent penetration depth into human skin [1] may intro-
duce nonlinear mixing behavior, which may affect the perfor-
mance of BSS algorithm negatively. However, other factors
may also impact the success of BSS techniques in extract-
ing pulsatile signals. Thus, deepened investigations on the
performance of BSS techniques are required. This contribu-
tion compares a novel spatially applied monochrome BSS ap-
proach to an accordingly adjusted multispectral application
of BSS, in order to characterize the potential efficacy of both
approaches.

2. MATERIALS AND METHODS

2.1. Data Recording and Selection

Video data was recorded using an industrial camera (IDS UI-
3370CP-C-HQ, 100 fps, 420x320 pixels, RGB 3x12 bit). The
camera was placed at a distance of approximately 60 cm to
patients’ faces. For illumination, a fluorescent light source
and natural light was used respectively. Overall 18 recordings
(13 male, 5 female; 30 minutes per recording) of resting car-
diovascular patients in a supine position during recovery after
heart surgery were selected from a larger collective. Elec-
trocardiogram (ECG) and finger PPG were simultaneously
recorded at 100 Hz as reference. Written informed consent
was obtained from all patients. The study was approved by
the Ethics Committees of Technische Universität Dresden.

In order to use only suitable data for further analysis, we
restricted our analysis to data segments which showed good
quality on the reference PPG and did not contain severe car-
diac disorders. A total of about 6 h video data was selected
(average length 1200± 400 s per patient). Since the selection
did not consider video quality, slight patient motion as well
as lightning inadequacies (changes or insufficient lightning)
persisted on the dataset.

2.2. cbPPG Extraction

The preselected video excerpts were processed in windows
of 10 s resulting in an overall 2197 windows. Every video
frame was covered by 25 x 19 overlapping ROIs (50% over-
lap at each direction) of 32 x 32 pixels (see figure 1 for a

Fig. 1. Exemplary video frame demonstrating overlapping
32x32 pixels ROIs for cbPPG extraction.

video frame example demonstrating ROI placement). The
ROI size was chosen according to own investigations regard-
ing the camera sensor chip which revealed that no significant
signal quality improvement can be obtained with larger ROIs
in comparable recording setups (distance to subject, resolu-
tion). The cbPPG was extracted from each ROIn (with n =
1,2,. . . ,475) at every wavelength (color = R,G,B) by averag-
ing its pixel values for consecutive frames (see figure 2 for an
example) [1].

Each 10 s cbPPG segment was normalized by subtract-
ing its mean and dividing it by its standard deviation. Fur-
thermore, 0.5 Hz highpass filtering (5th order Butterworth)
was applied to limit low frequency content below an expected
heart rate [21]. Suchlike preprocessed cbPPGn,color were
used for further processing.
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Fig. 2. Sample cbPPG excerpt showing signals extracted from
one ROI on patients face for three color channels R,G,B (grey:
cbPPGn,color signals, black: lowpass (5 Hz) filtered signals)
with corresponding reference PPG.
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Algorithm 1 Procedure to form input sets for applied BSS techniques
Input: Signals cbPPGn,color with n = 1, 2, . . . , 475 and color ∈ {R,G,B}

1: Localize maxima in amplitude spectra X(f) = |F {cbPPGn,G}| between [30, 240] bpm for every ROI→ f̂n,G
2: Calculate histogram of f̂n,G → Hf̂n,G

(see figure 3)

3: Identify most often occurring frequencies from Hf̂n,G
→ f̃i,G with i ∈ {1, 2, 3} (see figure 3)

4: Calculate SNRs from cbPPGn,G (see section 2.4) for f̃i with i ∈ {1, 2, 3} → SNRf̃i
n,G with i ∈ {1, 2, 3}

5: Form input sets
Monochrome approach: assemble the green channel from appropriate ROIs to three input sets according to

cbPPGn,G with highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i,

cbPPGn,G with second highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i,

cbPPGn,G with third highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i

→ Smc
i with i ∈ {1, 2, 3}

Multispectral approach: assemble color channels from one appropriate ROIs to three input sets according to
cbPPGn,R with highest SNRf̃i

n,G subject to f̂n,G
!
= f̃i,

cbPPGn,G with highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i,

cbPPGn,B with highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i

→ Sms
i with i ∈ {1, 2, 3}

Random selection: For testing against choosing only the highest SNRs, assemble analogous monochrome SmcR
i and

multispectral SmsR
i sets with respective random selection out of available cbPPGn,G subject to f̂n,G

!
= f̃i and i ∈ {1, 2, 3}

Output: Input sets Smc
i , Sms

i , SmcR
i and SmsR

i with i ∈ {1, 2, 3} (i.e. three input sets, containing three channels each for
the multispectral and monochrome approach)

2.3. Definition of input sets for applied BSS techniques

The multispectral approach and the monochrome approach
are characterized by their respective input signals. We used
identical ROI sizes and defined a number of three cbPPG
as input to the applied BSS techniques for both approaches
(further referred to as input set). Identical ROI sizes ensure
that both approaches can equally benefit from spatial averag-
ing. The choice of three input channels reflects the common
number of input channels when RGB videos are used. The
definition of input sets Smc

i , Sms
i , SmcR

i and SmsR
i i.e. the

selection of proper cbPPGn,color, for the monochrome and
the multispectral approach, respectively, are detailed in algo-
rithm 1.

Note that for each approach (multispectral and mono-
chrome) we defined three input sets consisting of three input
signals each. Such signals served as input to the applied
BSS techniques, namely PCA and FastICA (symmetric use,
general-purpose tanh-nonlinearity [15]). For each technique
we obtained three output components per input set.

2.4. Definition of signal quality

We adopted the spectral measure proposed in [9] as indicator
of signal quality. The measure bases on a frequency fsi which
is considered as usable signal. Given fsi a binary mask (BM)
is defined by

BMfsi (f) =

 1 if f ∈ [fsi ± 5 bpm]
1 if f ∈ [2 · fsi ± 5 bpm]
0 otherwise

(1)

BMfsi points the spectral indices of the usable signal as
well as the first harmonic. According to DeHaan et al. [9] the
signal-to-noise-ratio (SNR) is calculated from a given ampli-
tude spectrum X(f) by

SNRfsi = 10 log10

( ∑240bpm
f=30bpm BMfsi (f ) ·X(f)2∑240bpm

f=30bpm ((1− BMfsi (f )) ·X(f))2

)
(2)
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Fig. 3. Schematic view on the distribution of maximum fre-
quencies f̂n,G and derivation of f̃i,G. See algorithm 1 for
details.
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2.5. Performance evaluation

The efficacy of BSS techniques is evaluated in terms of output
components’ SNR. The SNR is calculated using the reference
heart rate f̂REF. f̂REF is obtained from the reference PPGs’
spectra by detecting the highest peak neighboring the mean
heart rate. This mean heart rate is derived from manually an-
notated beat-to-beat intervals from the reference ECG. The
binary mask BMf̂REF is generated according to (1). The SNR
of every output component for each input subset is estimated
by using (2). The highest SNR from a single output compo-
nent for both approaches (multispectral, monochrome) serves
as evaluation metric. Using only the highest SNR reflects our
aim to characterize the compared approaches in terms of their
potential efficacy.

3. RESULTS

Table 1 shows the results for the multispectral and mono-
chrome approach in terms of absolute SNR and SNR im-
provement, respectively. SNR improvement is calculated by
pairwise subtraction of highest output SNR and highest input
SNR within input sets. Note that positive values correspond to
an improvement of SNR. Figure 4 shows the SNR improve-
ment as a function of input SNRs. In general, a decreasing
BSS performance with increasing input SNR can be deduced.
In each configuration, BSS techniques can cause an absolute
decrease of SNR. Figure 4 further confirms table 1 in that
sense that the monochrome approach outperforms the mul-
tispectral approach on average. The respective left clusters
of low input SNR can be assigned to cases, where the actual
heart frequency was not part of the three most often occurring
maximum frequencies during input set construction.

4. DISCUSSION AND CONCLUSION

The presented work demonstrates that the application of
standard linear BSS techniques on cbPPG not necessarily
contributes to a SNR improvement. This holds particularly in
case of high input SNR. Moreover, the monochrome approach
outperforms common multispectral approaches, especially
for PCA. This result may be interpreted as a hint that non-
linear mixing, introduced by using different wavelengths, in
fact can degrade the performance of BSS techniques. The
average input SNR decrease during random input selection
together with a partially better BSS performance is not able to
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Fig. 4. SNR changes after BSS application (highest input SNR
selection) as a function of the input SNR.

compensate the lower input SNR in terms of a higher output
SNR (see table 1). This could be interpreted as justification
of exclusively selecting the highest input SNRs. Similar be-
havior was discovered by applying monochrome approaches
using the blue or the red color channel in comparison to the
shown performance generated by the green color channel.

Some limitations of our analysis should kept in mind.
Firstly, our examination only considers the highest possible
SNR. This handling is intended to characterize the potential
efficacy of BSS techniques. However, it neglects the permu-
tation indeterminacy of BSS which is essential to the practical
application of BSS techniques and was recently addressed by
our group [22]. Secondly, any similar comparison has to cope

Table 1. SNR and SNR improvement (pairwise SNR differences from all windows) after applying BSS techniques (in dB).
cbPPG (before BSS) PCA ICA

SNR SNR improvement SNR improvement
mean (median) std mean (median) std mean (median) std

multispectral approach 1.46 (3.12) 5.25 + 0.33 (– 0.06) 2.03 + 0.31 (+ 0.05) 1.92
monochrome approach 1.43 (3.14) 5.38 + 0.96 (+ 0.18) 2.20 + 0.64 (+ 0.02) 2.23

multispectral approach (random selection) – 1.38 (– 0.93) 4.04 + 0.94 (+ 0.76) 1.82 + 0.55 (+ 0.25) 1.80
monochrome approach (random selection) 0.02 (0.82) 4.14 + 0.46 (– 0.06) 2.09 + 0.62 (+ 0.20) 1.88
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with the problem of defining a well balanced input, in order to
not favor any of the compared methods. We addressed this is-
sue by using equal areas and three input channels. However,
other choices are reasonable. For example, multiple ROIs
could be combined to larger areas by averaging their pixel
intensities in order to cover the same image area for the mul-
tispectral and monochrome approach. Future works should
vary the conditions of both approaches to further deepen the
gained insights.
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