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ABSTRACT
Music artist (i.e., singer) recognition is a challenging task in
Music Information Retrieval (MIR). The presence of differ-
ent musical instruments, the diversity of music genres and
singing techniques make the retrieval of artist-relevant infor-
mation from a song difficult. Many authors tried to address
this problem by using complex features or hybrid systems. In
this paper, we propose new song-level timbre-related features
that are built from frame-level MFCCs via so-called i-vectors.
We report artist recognition results with multiple classifiers
such as K-nearest neighbor, Discriminant Analysis and Naive
Bayes using these new features. Our approach yields consid-
erable improvements and outperforms existing methods. We
could achieve an 84.31% accuracy using MFCC features on
a 20-classes artist recognition task.

Index Terms— music artist recognition, timbral model-
ing, song-level features, i-vectors, mfcc

1. INTRODUCTION AND RELATED WORK

Digital music is becoming more and more abundant and mu-
sic streaming services can be easily used on smart phones,
personal computers and smart TVs. As a result, technolo-
gies are required for efficient retrieval of this digital data to
provide tools for browsing the musical content. The identifi-
cation of music artists1 from analysis of the music signal is
one of these technologies.

As modeling the characteristics of an artist is crucial in
artist recognition, features that give a good representation of
an artist are very important. Different audio features have
been used for modeling an artist. Mel-Frequency Cepstrum
Coefficients (MFCCs) have shown great success in modeling
the human voice [1] and are found useful for different mu-
sic classification tasks [2, 3], yet using extra information like
chroma can still improve the performance [4]. Basically, three
main approaches have been followed in feature extraction. 1)
frame-level, 2) segment-level and 3) song-level features.

In order to have a good timbre representation, features
are often extracted from short-time frames of audio data.
Methods following the first approach, first classify directly

1From now on, we use the term music artist or artist to refer to the singer
or the band of a song.

the frames themselves, and then combine these frame-based
decisions into a song label by majority voting [5]. This
approach was successful on small datasets or solo singers.

The second approach aggregates frame-level features over
an audio segment that is longer than a frame but still shorter
than a song. Similar to above, distinct segment classifiers
are combined for the final decision about a song. In [6], a
neural network summarizes the audio features over musically
significant timescales using an unsupervised pre-training and
in [7] an ensemble learner selects from a set of audio features.
While promising results have been reported in [7] using this
approach for genre recognition, the effect of the segment size
is not clearly known for artist recognition.

The third approach builds a single set of song-level
features. In [8], a song-level feature is made using full-
covariance Gaussian densities and in [9], GMM super-vectors
extracted from a song and a distance measure are used to find
the similar songs. Compact signatures are generated for a
song in [10], then are compared using bipartite graph match-
ing. Also, multivariate kernels [11] have been used to build a
model of an artist and assign songs to artists using a sequence
of features, with promising results.

Besides these three approaches, other techniques such as
sparse modeling and vocal separation have been used to im-
prove artist recognition performance. For instance, [12] in-
vestigated sparse modeling techniques for singing voice sepa-
ration and unsupervised feature learning of group-delay func-
tions for an artist recognition task.

The task of speaker verification is to either accept or re-
ject the identity claimed by an speaker, based on a sample
of his voice. This task is similar to music artist recog-
nition since both try to find similarities between different
instances of an individual’s audio sample. Recently in the
field of speaker verification, Dehak et al. [13] introduced i-
vectors which significantly outperformed the state of the art.
I-vector is a feature-modeling technique that builds utterance-
level features using MFCCs. It has been successfully used
in other areas such as emotion recognition [14], language
recognition [15], accent recognition [16] and audio scene
detection [17]. In this paper, we propose new song-level fea-
tures for music artist recognition based on i-vectors. For our
experiments, we use the standard artist20 dataset [4]. Multi-
ple classifiers are tested, using a 6-fold leave-one-album-out
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Fig. 1. Block diagram of our artist recognition system em-
ploying proposed modeling technique.

validation procedure as proposed in [4].

2. THEORETICAL BACKGROUND

In this section, we describe the basic concept of i-vectors,
which we will use for timbral modeling. Our method consists
of 5 steps: (i) feature extraction, (ii) computation of Baum-
Welch statistics, (iii) i-vector extraction, (iv) linear discrimi-
nant analysis and (v) classification. A block diagram of the
proposed system can be found in Figure 1. After MFCC fea-
ture extraction, a set of statistics are computed for each song
and are used as a high-dimensional super-vector. A similar
approach using Gaussian super-vectors can be found in [9].
We apply a post-processing method called i-vector extrac-
tion [13] to these statistics super-vectors, which transforms
them into an information-rich low-dimensional vector, pro-
viding a space that best separates different artists and also
reduces the dimensionality from a couple of thousand dimen-
sions (the super-vector) to a few hundred (the i-vector). Then,
Linear Discriminant Analysis (LDA) is carried out to remove
the irrelevant dimensions and at the end, the output is fed into
the classifier.

2.1. Feature extraction

MFCCs have proven to be useful features for many audio and
music processing tasks [3, 4, 18]. They provide a compact
representation of the spectral envelope and are a musically
meaningful representation. Even though there are other rep-
resentations based on MFCCs such as [7], we stay away from
feature-engineering and focus on the timbral modeling tech-
nique. For the experiments at hand, we have extracted two
sets of 13- and 20-dimensional MFCCs. We used the 20-
dimensional MFCCs provided in the artist20 [4] dataset and
also extracted 13-dimensional MFCC features to assess how
much performance drops when less information is used.

2.2. Statistics computation

After extracting MFCCs, a set of statistics are computed for
each song. These statistics are known as 0th and 1st order

Baum-Welch (BW) statistics and are calculated using a Uni-
versal Background Model (UBM) [19]. UBM is a Gaussian
Mixture Model (GMM) composed of hundreds of Gaussians
which are trained on the MFCCs of songs from all the singers,
aiming at modeling the overall MFCC distribution over all
songs. Using a sequence of L MFCC frames from a specific
song and UBM component c, where c = 1, . . . , C and C is
the total number of Gaussian components, the Baum-Welch
statistics of the song are computed as follows:

( 0th order statistics) Nc =

L∑
t=1

γt(c) (1)

( 1st order statistics) Fc =
L∑

t=1

γt(c)Yt (2)

where γt(c) is the posterior probability of Gaussian com-
ponent c for frame t and Yt is the MFCC feature vector at
frame t. These statistics are then centered by removing the
mean. The dimension of a single Nc for a component c is 1;
for each c, Fc has D×1 dimensions where D is the dimension
of a MFCC vector (see an example in Section 3.1).

2.3. I-vector extraction

The term identity vectors or i-vectors was introduced by
Dehak et al. [13]. An i-vector refers to vectors of a low-
dimensional space called Total Variability Space (TVS).
The TVS models both artist and session variability [20]
where, in our context, the session variability would be the
variability exhibited by a given artist from one song to an-
other. The TVS is obtained by factor analysis, via a similar
procedure as in [21]. In the resulting new space, a given song
is represented by an i-vector which indicates the directions
that best separate different artists. A rectangular matrix T
of low rank is used to extract i-vectors from the statistical
super-vector of a song. Conceptually, given a T matrix, the
super-vector M extracted from a song of artist α decomposes
as follows:

M = m+ Tw (3)

where M is obtained by appending the first-order statis-
tics for all Gaussian components, m is the artist- and session-
independent vector and is estimated using UBM and w ∼
N (0, 1) is the artist- and session-dependent vector, referred
to as the i-vector.

The subspace matrix T is estimated via expectation maxi-
mization using statistics extracted from the training set. More
information about the training procedure of T can be found
in [13, 22]. The actual computation of an i-vector w for a
given song can be done using the following equation:

w = (I + T tΣ−1N(s)T )−1 · T tΣ−1F (s) (4)
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We define N(s) as a diagonal matrix with CD × CD di-
mensions with diagonal blocks of Nc ∗ I (c = 1, . . . , C and
I has D × D dimensions). F (s) is defined as a vector with
CD × 1 dimensions and generated by concatenating all first-
order Baum-Welch statistics Fc for a given song s (Nc and Fc

are described in Section 2.2 above). M is the super-vector of
the song, and Σ is a diagonal covariance matrix of dimension
CD × CD estimated during factor analysis training; it mod-
els the residual variability not captured by the total variability
matrix T .

2.4. Linear Discriminant Analysis (LDA)

After extracting and centralizing the i-vectors, LDA [23] is
applied to remove unnecessary or irrelevant dimensions in
the TVS. If different songs from a given artist are assumed
to represent one class, LDA minimizes the intra-class vari-
ance caused by artist-independent effects and maximizes the
variance between artists.

2.5. Classification

Multiple classifiers were used to classify our song-level fea-
tures: (i) K-Nearest Neighbor (KNN), (ii) Naive Bayes (NB),
(iii) Discriminant Analysis (DA), (iv) Probabilistic Linear
Discriminant Analysis (PLDA). Cosine distance has been
successfully used with i-vectors [13] to calculate the simi-
larity between train and test i-vectors. Hence, we use the
cosine distance with our KNN classifier. Naive Bayes clas-
sifiers have been successfully tested with i-vectors in [16].
Discriminant Analysis (DA) assumes different classes have
different Gaussian distributions. It is a suitable method since
i-vectors are assumed to be normally distributed. Probabilis-
tic Linear Discriminant Analysis (PLDA) [24] is a generative
model which models both intra-class and inter-class variance
as multidimensional Gaussian and proved to be successful
with i-vectors [25]. In our experiments, i-vectors are length
normalized [26] before apply PLDA, DA is used with a lin-
ear discriminant function and a uniform prior, and the KNN
classifier with a cosine distance and k=3.

3. PROPOSED TIMBRAL MODELING METHODS

In this section, using the theoretical background described
above, we introduce our specific method for computing song-
level features that models timbre for the artist recognition
task. To illustrate the importance of the (complex) i-vector
component of the method, we also test an alternative model-
ing system that extracts similar song-level features without
using i-vectors. The resulting features are supplied to the
same classifiers and the results are compared to each other.

3.1. Timbral modeling method: I-vector - LDA

A 400-dimensional TVS is proposed to extract i-vectors from
statistical super-vectors. A UBM with 1024 components
is trained to compute statistical super-vectors (for exam-
ple when 20-MFCCs are used, the 0th order BW statistics
have 1024 × 1 dimensions and 1st order BW statistics have
1024 × 20 dimensions). I-vectors are extracted from these
super-vectors, fed into a LDA and the dimension reduced to
19, then the output is used to train our classifiers. A block-
diagram of our proposed method is shown in Figure 1. This
method is applied on two sets of 13- and 20-dimensional
MFCC features. Below, the proposed method using the DA
classifier is named ivecDA, and analogously for the other
three classifiers (3NN, NB, and PLDA).

3.2. Alternative timbral modeling method: PCA - LDA

In this alternative timbral modeling method, the same pro-
cedure as described in Section 3.1 is used, but instead of
the i-vector extraction block, a Principal Component Anal-
ysis (PCA) is applied on statistical super-vectors to reduce
the dimensionality to 400. A 1024 components GMM is used
to compute statistical super-vectors , in the same way as in
Section 3.1. The same classifiers as described in Section 3.1
are used to classify these song-level features. In the results
section, this alternative method is entitled as ALTpcaDA.

3.3. Resources

The MSR Identity Toolbox [27] was modified for i-vector ex-
traction and PLDA. We use drtoolbox [28] to apply LDA and
PCA. For the 20-dimensional MFCCs, we use the features
provided with the dataset, which are also used by one of our
baseline methods [4]. For the 13-dimensional MFCCs, we use
MIRTOOLBOX [29] with 40 frequency bands, 25 ms window
length and 50% overlap to extract features from 32kbps mp3
files provided in the dataset. This is because another baseline
method [11] also used it to extract 13-MFCCs. We use 2000
randomly-selected frames from the middle area of each song
to compute Baum-Welch statistics, assuming that this middle
area of the song contains the most singing voice data.

4. EXPERIMENTS

4.1. Dataset and Evaluation method

All the experiments reported in this paper are done using the
artist20 dataset [4]. It contains 1413 tracks, mostly rock and
pop, composed of six albums each from 20 artists. We per-
form 6-fold cross-validation, with five albums from each artist
used for training and one for testing in each iteration, as pro-
posed in [4]. We report mean class-specific accuracy, F1, pre-
cision and recall, first averaging over the classes, then over
the folds. In each iteration, only the training folds are used
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to train T and UBM, which are then used in classifying the
independent test cases. To speed up the process, we use only
a randomly selected 1

3 of all the songs in the training folds to
train the UBM; for learning T , all the training songs are used.

4.2. Baseline methods

Multiple baseline methods from the literature are compared
to our method. Results are reported for a 20-class artist
recognition task on the artist20 [4] dataset. The first baseline
(BLGMM) models artists with Gaussian mixture models [4]
whose frame-level feature representation is MFCCs. The
second baseline (BLsparse) applies a sparse feature learn-
ing method [12] with a ‘bag of features’ (bof) using both
the magnitude and phase parts of the spectrum. The third
baseline (BLsignature) generates compact signatures for each
music track using a 15-dimensional MFCC feature set and
compares these using bipartite graph matching [10]. The
fourth baseline (BLmultivar) uses multivariate kernels [11]
with the direct uniform quantization of the 13-dimensional
MFCC features. The results for the latter three are taken from
their publications, while the results for BLGMM baseline
are reproduced using the implementation provided with the
dataset. All baselines reported performance on the artist20
dataset using the same songs, and the same fold splits in the
cross-validation.

4.3. Results and discussion

Table 1 summarizes the results. As can be seen, our method
clearly outperformed the baselines: compared to the 13-
MFCC variant of our method, the accuracies achieved by
BLGMM, BLsparse, BLsignature and BLmultivar are be-
low our results by, respectively, 4.66, 2.25, 1.42 and 0.84
standard deviations (the standard deviation of the accuracy
over the 6 folds for our method (ivecDA) was 4.82). When
we use 20-dimensional MFCC features, the differences are
3.86, 2.29, 1.74 and 1.36 std. deviations (the standard de-
viation of the accuracy of our method (ivecDA) was 7.35).
As expected, using more coefficients in MFCCs improves
the performance: 20-MFCCs achieved better results than 13-
MFCCs. Comparing the performance of different classifiers
using the proposed song-level features in Table 1, we see
that the proposed features yield stable results using different
classifiers and manage to achieve good performances using
different classification models. The proposed method with
DA classifier (ivecDA) performs best.

Table 2 gives the results of our method using the DA
classifier with different number of Gaussian components. It
shows that increasing the number of Gaussian components
improves the classification accuracy. The maximum number
of 1024 Gaussians is used in this paper due to computation
limits and long training time.

Our final observation refers back to Table 1: comparing
the results of our proposed method to the alternative method

with PCA instead of i-vectors (ALTpcaDA) clearly reveals
that i-vector extraction is more effective than the PCA in find-
ing the best artist directions in feature space, thus justifying
the increased computational effort.

Method Feats. Acc % F1 % Prec % Rec %
BLGMM 20-mfcc 55.90 55.18 58.74 58.20
BLsparse bof 67.50 - - -
BLsignature 15-mfcc 71.50 - - -
BLmultivar 13-mfcc 74.33 74.79 - -
ivecDA 13-mfcc 78.37 77.83 80.38 77.94
ivec3NN 13-mfcc 78.32 76.94 79.13 77.96
ivecNB 13-mfcc 77.89 77.21 79.35 77.51
ivecPLDA 13-mfcc 77.79 76.55 77.86 77.83
ALTpcaDA 13-mfcc 60.55 59.54 65.08 60.35
ivecDA 20-mfcc 84.31 83.68 84.92 84.67
ivec3NN 20-mfcc 83.70 82.56 83.28 83.91
ivecNB 20-mfcc 83.90 83.28 84.91 83.97
ivecPLDA 20-mfcc 83.22 82.02 82.88 83.57
ALTpcaDA 20-mfcc 67.95 67.08 71.39 68.12

Table 1. Artist recognition results for different methods on
the artist20 dataset.

Gauss. # Feats. Acc % F1 % Prec % Rec %
128 13-mfcc 71.18 73.6 72.90 71.00
256 13-mfcc 74.47 73.71 75.62 74.41
512 13-mfcc 76.71 75.88 77.79 76.64
1024 13-mfcc 78.37 77.83 80.38 77.94
128 20-mfcc 80.07 79.37 81.35 80.3
256 20-mfcc 82.13 81.62 83.32 82.38
512 20-mfcc 83.53 82.94 83.93 83.81
1024 20-mfcc 84.31 83.68 84.92 84.67

Table 2. Artist recognition results for different Gaussian
numbers with the proposed method and the DA classifier
on the artist20 dataset.

5. CONCLUSION AND FUTURE WORK

In this paper, a new timbral modeling technique was proposed
to extract song-level features for the task of music artist recog-
nition. Using these song-level features, an 84.31% accuracy
and 83.68% F1 on the artist20 dataset were achieved. To
the best of our knowledge, these results are the highest artist
recognition results published so far for the artist20 dataset.
The new features were evaluated on a variety of classifiers and
proved to yield stable results. We can conclude that our tim-
bre modeling method outperforms other current approaches.
We also observed that using more coefficients in MFCCs im-
proves the recognition performance and 20-MFCCs outper-
formed 13-MFCCs. The effect of the number of Gaussians
is reported by using multiple components. We found that the
accuracy increases as the number of Gaussian rises, which in-
dicates that the number of Gaussian components plays a sig-
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nificant role in the modeling process. A comparison with a
system using PCA instead of i-vector extraction supported the
superiority of the i-vector modeling approach. In the future,
we will investigate the use of a singing voice detection system
instead of randomly choosing the frames from the middle of
a song. Also, we would like to study the performance of our
method in a more complex problem by increasing the number
of the classes (i.e., singers).
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