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ABSTRACT

We describe new Bayesian algorithms for cooperative blind

equalization in a network in which the signal broadcast by

a single transmitter is received by multiple remote nodes

through distinct frequency-selective channels. The algo-

rithms are based on Rao-Blackwellized point mass filters,

and approximate the posterior densities of the unknown chan-

nel parameters by Gaussian mixtures of fixed order. To keep

computations treatable, density mixtures are reduced by a

modified version of West’s algorithm. A reduced complex-

ity approach which employs a single mode approximation of

some remote quantities is also considered. Via numerical sim-

ulations, we verify that the proposed algorithms outperform

certain particle-filtering-based algorithms with comparable

communication loads.

Index Terms— Blind Equalization, Distributed Algo-

rithms, Bayesian Estimation, Point Mass Filter.

1. INTRODUCTION

Distributed estimation has attracted much interest due to the

potential robustness and performance gains provided by those

techniques. Most original distributed estimation methods [1,

2] were linear, but recently there has been a surge of inter-

est in nonlinear methods [3–5]. Nonlinear methods generally

lead to more accurate estimation results for nonlinear or non-

Gaussian signal models at the cost of heavier computational

and communication burden.

We consider in this paper the use of Rao-Blackwellized

point mass filters (PMF) [6–8]. PMFs are deterministic, and

recursively evaluate the posterior probability of all possible

current states of the hidden (discrete) random variable given

the set of observations. The complexity of PMFs is propor-

tional to the number of possible state transitions and, in many

setups, is much smaller than that of particle filters, whose

complexity is proportional to the required number of parti-

cles. Contrary to particle filters, PMFs may need to approx-

imate the posterior distributions of the unknown model pa-

rameters to keep computations feasible [7]. In the consid-

ered blind equalization scenario, those posteriors are Gaus-

sian mixtures with exponentially growing size, which are ap-

proximated by mixtures with constant size by the mixture re-

duction algorithms [9].

In this paper, we develop novel distributed blind equaliza-

tion approaches [3] based on PMFs. The proposed methods

extend previous ones [6, 10] to a signal model that consid-

ers multiple remote receivers, and exhibit reduced complex-

ity compared to [11]. The algorithms do not demand a fusion

center, as each individual receiver processes its observations

independently and exchange information to approximate the

optimal joint estimate of the transmitted data given all obser-

vations. As we verify via numerical simulations, the proposed

algorithms surpass certain approaches based on particle filters

for comparable communication requirements.

The remainder of the text is organized as follows: in Sec-

tion 2 we describe the considered problem setup and present

in Section 3 the PMF. Section 4 introduces a distributed blind

equalization algorithm based on PMF. Section 5, in turn, de-

scribes a second approach aimed at reducing communication

complexity. In Section 6 we assess the performance of the

proposed methods and finally draw our conclusions in Sec-

tion 7.

2. PROBLEM SETUP

Denote by xt ∈ {±1} the differentially encoded binary sym-

bol transmitted at time instant t corresponding to {bt}, an in-

dependent, identically distributed (i.i.d.) binary bit sequence.

The observations yr,t, 1 ≤ r ≤ R, at the r−th node of a

network of R receivers are assumed to be the output of the

additive noise frequency-selective channel

yr,t = h
T
r xt + vr,t , (1)

where xt , [xt . . . xt−L+1]
T

, L denotes the channel or-

der, vr,t is an i.i.d. zero-mean Gaussian random process

of known variance σ2
r , and the unknown, random chan-

nel impulse response parameter vector hr ∈ R
L×1 is as-

sumed to be distributed a priori as hr ∼ N (hr|0; I/ε
2),

where N denotes a (multivariate) Gaussian p.d.f., and ε
is the model’s hyper-parameter. The random quantities

xt,h1, . . . ,hR, v1,t, . . . , vR,t are presumed to be mutually

independent.
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Under these assumptions, our objective is to develop a re-

cursive method for obtaining maximum a posteriori estimates

b̂t = argmax
bt

p(bt|Yt), where Yt , {y1,1:t, . . . , yR,1:t} and

yr,1:t , {yr,1, . . . , yr,t}. In the sequel, we also employ the

notation yt , y1:R,t and h , h1:R.

3. RAO-BLACKWELLIZED POINT MASS FILTER

The Rao-Blackwellized Point Mass Filter (PMF) [7] allows

one to recursively evaluate the posterior discrete probabil-

ity p(xt|Yt). Suppose that, at time instant t − 1, we have

p(xt−1|Yt−1) and p(h|xt−1, Yt−1). For t = 1, these quan-

tities reduce to the prior probabilities of symbol p(x0) and

the prior probability density function p(h), respectively. The

PMF first computes

p(yt,xt,h,xt−1|Yt−1) = p(yt|xt,h,xt−1, Yt−1)×

p(xt|h,xt−1, Yt−1)p(h|xt−1, Yt−1)p(xt−1|Yt−1). (2)

The updated conditional probability of the parameters h can

then be evaluated as

p(h|xt, Yt) =

∑

xt−1

p(yt,xt,h,xt−1|Yt−1)

∑

xt−1

∫

RLR

p(yt,xt,h,xt−1|Yt−1) dh

, (3)

and the updated posterior of the states xt as

p(xt|Yt) ∝
∑

xt−1

∫

RLR

p(yt,xt,h,xt−1|Yt−1) dh. (4)

For the recursion (2)-(4) to be of practical use, xt must be dis-

cretely distributed on a finite number of points and the integral

in h must be treatable. This generally requires that some form

of approximation be applied to p(h|xt, Yt).

4. PMF-BASED DISTRIBUTED BLIND

EQUALIZATION ALGORITHM

Using Equation 1 and exploiting conditional independence re-

lations, it follows that, for a given pair of possible states x
(i)
t

and x
(j)
t−1, we have

p(yt|x
(i)
t ,h,x

(j)
t−1, Yt−1) =

R
∏

r=1

N
(

yr,n|(x
(i)
t )Thr;σ

2
r

)

,

(5)

p(x
(i)
t |h,x

(j)
t−1, Yt−1) = p(x

(i)
t |x

(j)
t−1). (6)

For the integral in (3) to have closed analytical expression,

we approximate p(h|x
(j)
t−1, Yt−1) as the M−mode Gaussian

product mixture

p(h|x
(j)
t−1, Yt−1) ,

M
∑

m=1

w
(j,m)
t−1

R
∏

r=1

N
(

hr|ĥ
(j,m)
r,t−1;Σ

(j,m)
r,t−1

)

,

(7)

where w
(j,m)
t−1 are positive weights such that

∑M

m=1 w
(j,m)
t−1 =

1, ∀j.

Substituting (5)-(7) into (2), it follows that

p(yt,x
(i)
t ,h,x

(j)
t−1|Yt−1) =

=

M
∑

m=1

w
(j,m)
t−1

R
∏

r=1

{

N
(

yr,n|(x
(i)
t )Thr;σ

2
r

)

×

N
(

hr|ĥ
(j,m)
r,t−1;Σ

(j,m)
r,t−1

)}

p(x
(i)
t |x

(j)
t−1)p(x

(j)
t−1|Yt−1) (8)

=

M
∑

m=1

w
(j,m)
t−1

R
∏

r=1

{

N
(

yr,n|(x
(i)
t )T ĥ

(j,m)
r,t−1; γ

(i,j,m)
r,t

)

×

N
(

hr|ĥ
(i,j,m)
r,t ;Σ

(i,j,m)
r,t

)}

p(x
(i)
t |x

(j)
t−1)p(x

(j)
t−1|Yt−1),

(9)

where, to obtain (9) from (8) we exploited standard Kalman

filter theory results (see [12] for details), and [12]

γ
(i,j,m)
r,t = (x

(i)
t )TΣ

(j,m)
r,t−1x

(i)
t + σ2

r , (10)

e
(i,j,m)
r,t = yr,t − (x

(i)
t )T ĥ

(j,m)
r,t−1, (11)

ĥ
(i,j,m)
r,t = ĥ

(j,m)
r,t−1 +Σ

(j,m)
r,t−1x

(i)
t e

(i,j,m)
r,t /γ

(i,j,m)
r,t , (12)

Σ
(i,j,m)
r,t = Σ

(j,m)
r,t−1 −Σ

(j,m)
r,t−1x

(i)
t (x

(i)
t )TΣ

(j,m)
r,t−1/γ

(i,j,m)
r,t ,

(13)

with ĥ
(j,m)
r,0 = 0 and Σ

(j,m)
r,0 = I/ε2. To integrate h out of (9),

it suffices to discard the Gaussian densities in hr. Performing

such operation and substituting the result into (4), we obtain

that

p(x
(i)
t |Yt) ∝

∑

j

M
∑

m=1

w
(i,j,m)
t (14)

where

w
(i,j,m)
t , w

(j,m)
t−1

R
∏

r=1

{

λ
(i,j,m)
r,t

}

p(x
(i)
t |x

(j)
t−1)×

p(x
(j)
t−1|Yt−1), (15)

λ
(i,j,m)
r,t , N

(

yr,t|(x
(i)
t )T ĥ

(j,m)
r,t−1; γ

(i,j,m)
r,t

)

. (16)

Similarly, it follows from (3) that

p(h|x
(i)
t , Yt),

∑

j

M
∑

m=1

w̃
(i,j,m)
t

R
∏

r=1

N
(

hr|ĥ
(i,j,m)
r,t ;Σ

(i,j,m)
r,t

)

,

(17)
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where w̃
(i,j,m)
t , w

(i,j,m)
t /

∑

j

∑M

m=1 w
(i,j,m)
t .

We wish to show that (17) has the same functional form

of (7). To verify that, we introduce the unitary mapping

(i, j,m) 7→ (i,m′) , (i, (j − 1)M +m), 1 ≤ m′ ≤ MNj ,

where Nj denotes the number of possible predecessor states

x
(j)
t−1 given x

(i)
t (2 for binary systems). This allows (17) to be

rewritten as

p(h|x
(i)
t , Yt),

MNj
∑

m′=1

w̃
(i,m′)
t

R
∏

r=1

N
(

hr|ĥ
(i,m′)
r,t ;Σ

(i,m′)
r,t

)

,

(18)

which is similar to (7) except for the increased number of sum

components. As a consequence, if no further approximations

are made to (18), the complexity of PMFs grows exponen-

tially with time.

4.1. Mixture Reduction

To keep the computational complexity of the PMF treatable,

we follow [7] [6] and reduce the mixture in (18) to M compo-

nents. This can be carried out by several algorithms (see [9]

for a review), which differ in performance and computational

complexity.

We propose to use a new version of West’s algorithm [13]

adapted to product mixtures. The algorithm is iterative: take

a mixture as (18) with M ′ components. If M ′ = M , finish.

Otherwise, if M ′ > M , determine

m̃ , argmin
m

w
(i,m)
t .

Then, for all m 6= m̃, evaluate the sum of symmetrized

Kullback-Leibler divergences [14]

D(m̃,m) ,

R
∑

r=1

DKL(φ
i,m̃
r,t ||φ

i,m
r,t ) +DKL(φ

i,m
r,t ||φ

i,m̃
r,t )

=

R
∑

r=1

{

tr((Σ
(i,m)
r,t )−1

Σ
(i,m̃)
r,t ) + tr((Σ

(i,m̃)
r,t )−1

Σ
(i,m)
r,t )+

‖ĥ
(i,m)
r,t − ĥ

(i,m̃)
r,t ‖2

(Σ
(i,m)
r,t )−1+(Σ

(i,m̃))
r,t )−1

− 2L

}

, (19)

where DKL(·||·) denotes the Kullback-Leibler divergence [13]

and φi,m
r,t , N

(

hr|ĥ
(i,m)
r,t ;Σ

(i,m)
r,t

)

. Next, the index of the

nearest component is determined as

m̂ , argmin
m

D(m̃,m).

After that, components with indexes m̃ and m̂ are merged via

marginal moment matching [13]

w̄
(i,m̂)
t = w

(i,m̂)
t + w

(i,m̃)
t , (20)

¯̂
h
(i,m̂)
r,t = (w

(i,m̂)
t ĥ

(i,m̂)
r,t + w

(i,m̃)
t ĥ

(i,m̃)
r,t )/w̄

(i,m̂)
t , (21)

Σ̄
(i,m̂)
r,t = (w

(i,m̂)
t Σ

(i,m̂)
r,t + w

(i,m̃)
t Σ

(i,m̃)
r,t )/w̄

(i,m̂)
t +

+
w

(i,m̂)
t w

(i,m̃)
t

(w̄
(i,m̂)
t )2

(ĥ
(i,m̂)
r,t − ĥ

(i,m̃)
r,t )(ĥ

(i,m̂)
r,t − ĥ

(i,m̃)
r,t )T .

(22)

After evaluating (20)-(22), the distinctive bar is dropped from

the quantities on the left-hand size and the component m̃ is

deleted. The resulting mixture has M ′ − 1 components.

4.2. Distributed Implementation

A distributed implementation of PMF-based blind equalizer

requires that computations performed in the filtering step

(Section 4) and the mixture reduction step (Section 4.1) be

spread across the nodes.

To implement the filtering step, each node r runs a bank

of M · 2L+1 Kalman filters that process the local observa-

tion yr,t, update the statistics of hr, and evaluate λ
(i,j,m)
r,t

via (16). These quantities are then broadcast to the remain-

ing nodes (M · 2L+1 real numbers), which evaluate w
(i,j,m)
t

(Equation 15) and the symbols’ posterior probabilities via

(14).

As for the mixture reduction step, the r−th node evaluates

the r−th term of the sum (19) and broadcasts this quantity

to the remaining nodes. All nodes then are able to evaluate

(19) and determine the indexes of components to be merged.

Moment matching operations (21)-(22) referring to the r−th

component are performed with local information. To reduce

a mixture from 2M to M components, a total of (3M2 −
M)/2 distances must be evaluated. As this procedure must

be repeated for each possible state x
(i)
t , a total of (3M2 −

M)2L−1 real numbers must be broadcast.

5. THE DISTRIBUTED PMF (DPMF) ALGORITHM

To reduce the communication burden, we propose an alter-

native algorithm in which the general r−th node employs a

single mode approximation to the remote marginal posteriors

p(hs|x
(j)
t−1, Yt−1), r 6= s. By this new approach, the r-th node

approximates (7) as1

pr(h|x
(j)
t−1, Yt−1) , pr(hr|x

(j)
t−1, Yt−1)×

R
∏

s=1
s 6=r

N
(

hs|h̃
(j)
s,t−1; Σ̃

(j)
s,t−1

)

, (23)

1We denote by pr(·) and w
(j,m)
r,t−1 quantities that are specific to the r−th

node.
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where

pr(hr|x
(j)
t−1, Yt−1) ,

M
∑

m=1

w
(j,m)
r,t−1N

(

hr|ĥ
(j,m)
r,t−1;Σ

(j,m)
r,t−1

)

(24)

is the local marginal posterior, and h̃
(j)
s,t−1 and Σ̃

(j)
s,t−1 are the

moments of the remote posteriors ps(hs|x
(j)
t−1, Yt−1) (defined

as in Equation 24), which can be evaluated as

h̃
(j)
s,t−1 =

M
∑

m=1

w
(j,m)
s,t−1 ĥ

(j,m)
s,t−1, (25)

Σ̃
(j)
s,t−1 =

M
∑

m=1

w
(j,m)
s,t−1

[

ĥ
(j,m)
s,t−1(ĥ

(j,m)
s,t−1)

T +Σ
(j,m)
s,t−1

]

− h̃
(j)
s,t−1(h̃

(j)
s,t−1)

T . (26)

Similarly to Section 3, plugging (23) into (2) yields

pr(yt,x
(i)
t ,h,x

(j)
t−1|Yt−1) = p(x

(i)
t |x

(j)
t−1)pr(x

(j)
t−1|Yt−1)×

M
∑

m=1

{

w
(j,m)
r,t−1λ

(i,j,m)
r,t N

(

hr|ĥ
(i,j,m)
r,t ;Σ

(i,j,m)
r,t

)}

×

R
∏

s=1
s 6=r

{

λ̃
(i,j)
s,t N

(

hs|h̃
(i,j)
s,t ; Σ̃

(i,j)
s,t

)}

, (27)

where λ̃
(i,j)
s,t , N

(

ys,n|(x
(i)
t )T h̃

(j)
s,t−1; γ̃

(i,j)
s,t

)

and γ̃
(i,j)
s,t ,

(x
(i)
t )T Σ̃

(j)
s,t−1x

(i)
t +σ2

s . The expressions for h̃
(i,j)
s,t and Σ̃

(i,j)
s,t

will be omitted since these variables do not need to be evalu-

ated by the proposed algorithm.

Integrating h out of (27) and substituting the result into

(3) and (4), we get that

pr(x
(i)
t |Yt) ∝

∑

j

M
∑

m=1

w
(i,j,m)
r,t , (28)

pr(hr|x
(i)
t , Yt) =

∑

j

N
∑

m=1

w̃
(i,j,m)
r,t N

(

hr|ĥ
(i,j,m)
r,t ;Σ

(i,j,m)
r,t

)

,

(29)

where w̃
(i,j,m)
r,t = w

(i,j,m)
r,t /

∑

j

∑M

m=1 w
(i,j,m)
r,t , and

w
(i,j,m)
r,t , p(x

(i)
t |x

(j)
t−1)p(x

(j)
t−1|Yt−1)w

(i,j,m)
r,t−1 λ

(i,j,m)
r,t

R
∏

s=1
s 6=r

λ̃
(i,j)
s,t .

(30)

By plugging (29) back into (23), one verifies that, in contrast

to the algorithm of Section 4, the DPMF algorithm can per-

form mixture reduction (Section 4.1) independently for each
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Fig. 1. Mean BER estimated in 3.000 Monte Carlo runs.

local marginal posterior (Equation 29) without changing the

functional form of (23) as t grows. To accomplish this, it

suffices to replace w
(·)
t with w

(·)
r,t in (20)-(22) and drop the

summation in (19).

As a consequence, the r−th node needs only to broadcast

λ̃
(i,j)
r,t (2L+1 real numbers), which allow (30) and hence (28)

and (29) to be evaluated by the remaining nodes.

6. SIMULATION RESULTS

We evaluated the steady-state performance of the proposed

algorithms via Monte Carlo simulations consisting of 3.000

independent runs, in each of which the mean bit error rate

(BER) was estimated as a function of EB/N0. In each real-

ization, a random sequence of 250 i.i.d differentially encoded

binary symbols was transmitted, being the first 150 bits dis-

carded to allow for convergence.

The simulated system has R = 4 receivers. The transmis-

sion channels hr have L = 3 coefficients, and were obtained

by sampling independently for each receiver from a Gaussian

p.d.f. N (0; I) and normalizing so that ‖hr‖
2 = 1. The noise

variance was determined as σ2
r = 1/(EB/N0). Figure 1 dis-

plays the performance of the PMF-based algorithm (PMF)

and of the reduced complexity version (DPMF) as a func-

tion of EB/N0 and M , the number of modes. Note that, for

M = 1, DPMF is equivalent to PMF. For comparison, we

ran with the same setup the optimal joint particle-filter-based

algorithm (DcPF) [3] and the particle filtering algorithm that

employs parametric approximations (ADPF) [3], both using

300 particles and the prior importance function. As one may

verify, the performance of the PMF and DPMF methods grow

with the number of modes M , surpassing the performance of

the ADPF for M = 3. Although the DPMF is outmatched

by the optimal DcPF, the communication cost (Table 1) of the

former for M = 3 is only 5.3% of the latter. Note that this

remains true even for larger channel sizes L, as particle-filter-
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Table 1. Comparison of Communication and Computational

Costs (per node per symbol).

real numbers operations

broadcast

(per symbol)

DcPF P O(PL2)

ADPF 2L O(PL2)

PMF 3(M2 +M)2L−1 O(2L+1M2L3)

DPMF 2L+1 O(2L+1M2L3)

based equalizers demand a number of particles P ≫ 2L for

proper operation. The computational cost of the PMF and

DPMF are dominated by the cost of the mixture reduction al-

gorithm, and is comparable to that of particle filters for the

considered parameters.

7. CONCLUSIONS

This paper described two distributed Bayesian algorithms for

cooperative blind equalization based on Rao-Blackwellized

point mass filters. The PMF algorithm approximates the pos-

terior densities of channels parameters by Gaussian mixtures

of fixed order. The required mixture reductions are imple-

mented via a distributed version of the West’s algorithm [13].

To reduce communication among nodes, the DPMF algorithm

performs mixture reductions only locally, presenting to the

remaining nodes a single term Gaussian approximation. Via

numerical simulations, we verify that the proposed algorithms

outperform certain particle-filtering-based algorithms that in-

cur in comparable communication and computational com-

plexities.

Counterintuitively, for M > 1, the PMF performed worse

than the DPMF for low noise levels. This can possibly be ex-

plained by the fact that the PMF deals with Gaussian mixtures

in which the components are more distant (in the KL measure)

than for the DPMF (since all terms in the product but one are

equal), which exacerbates distortions caused by the mixture

reduction process. It remains to be verified, as future work,

if the use of more complex mixture reduction algorithms [9]

can avoid this effect.
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