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Abstract

The standard median filter has only one tuning
parameter—the width of the moving window on
which it is based—and this has led to the develop-
ment of a number of extremely useful extensons, in-
cluding the recursive median filter, weighted median
filters, and recursive weighted median filters. The
Hampel filter is a member of the class of decision fil-
ters that, as we note here, may be viewed as another
generalization of the median filter. This paper ex-
ploits this relationship, defining and briefly exploring
the class of generalized Hampel filters, obtained by
applying the median filter extensions listed above.

1 Introduction

In their paper, “On a class of nonlinear filters,” Sicu-
ranza and Carini begin by noting [6]:

“The set of nonlinear filters is extremely
large since their definition simply excludes
the applicability of the linear superposition
property on which the theory of linear filters
is based. However, from the very beginning,
attempts have been done to suitably classify
nonlinear filters on the basis of some pecu-
liar properties, leading to the identification
of certain classes of nonlinear filters.”

This paper adopts a similar philosophy, restricting
consideration to a class of nonlinear filters obtained
by combining two previously studied filter classes:
the Hampel filter described in Sec. 2, and the median
filter extensions described in Sec. 3. The result is a
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class of nonlinear filters we believe to be new, includ-
ing these previously studied filters as special cases,
but exhibiting a greater degree of design flexibility.

2 The Hampel filter

The Hampel filter belongs to the class of decision-
based filters discussed in the book by Astola and Ku-
osmanen [1, p. 194], who note that the basic concept
has been reinvented again and again. The specific
filter considered here is a moving-window implemen-
tation of the Hampel identifier described by Davies
and Gather [2]: the central point in the data window
wy, is deemed an outlier and replaced if it lies more
than t times the moving data window’s MAD scale
estimate from its median:

|

Here, my, is the median of w; and Sy is the MAD
scale estimate, defined as:

if |.’I,'k - mk| S tSk.
otherwise,

T
mg

(1)

(2)

Note that my is the output of the standard median
filter, so the Hampel filter reduces to the standard
median filter when t = 0.

To provide a basis for comparing the different fil-
ters considered in this paper, we apply them to the
420-point simulated data sequence shown in Fig. 1,
which contains four components: a piecewise-linear
“step-and-ramp” signal shown as the dark solid line
in the plot, zero-mean Gaussian white noise with
standard deviation ¢ = 0.1 contaminating the first
240 points of the sequence, a sinusoidal component

S) = 1.4826 x medianc|_ g, x){|Tr—j — mxl},
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Figure 1: A simulated 420-point signal.

with period 29 and amplitude 0.3, appearing from
k =100 to k = 420, and isolated spikes appearing at
various points. The primary question of interest here
is how well the different filters considered eliminate
the isolated spikes in this signal while preserving the
low-level details, especially the sinusoidal component.

Fig. 2 shows the results obtained for the median fil-
ter with K = 5 applied to this signal sequence, which
eliminates the noise spikes completely. In the noise-
contaminated portion (k = 1 through k = 240), this
filter strongly suppresses the low-level noise, which
may or may not be desirable. In general, the dis-
continuous transitions are preserved well but the si-
nusoidal variations are clipped significantly, a highly
undesirable distortion in many applications.

Fig. 3 shows the results obtained for the Hampel
filter with the same window width (K = 5) and the
threshold parameter ¢t = 1 applied to the simulated
signal sequence shown in Fig. 1. Here, the impulsive
noise spikes are removed as effectively as they are by
the median filter, but the low-level detail preservation
is much better. In particular, note that the low-level
noise is largely preserved, and there is no obvious
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Figure 2: Response of the median filter with K =5
to the signal from Fig. 1.

distortion of the sinusoidal component here.

The root sequences for the standard median filter
have been well-characterized [3], so it is worth not-
ing that the set R; of root sequences for the Hampel
filter with threshold ¢ contains the median filter root
sequence R for all ¢ > 0. Specifically, if s < ¢, it
follows that:

|xg — mi| < sSp <tSkp = Rs C Ry

(3)

Also, note that there exist non-constant sequences
for which S}, is identically zero. Specifically, if more
than K of the values x;_; in the moving data win-
dow have the same value, this value corresponds to
the median my, and zy—; — my = 0 for these points.
As a consequence, S = 0, regardless of the other
values in the data window, an effect is known as im-
plosion in the statistics literature. Hence, we will re-
fer to sequences {zy} for which Sy is identically zero
as implosion sequences. Their practical significance
is that the Hampel filter response is always equal to
the corresponding median filter response for these se-
quences, independent of the threshold parameter ¢.
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Figure 3: Response of the Hampel filter with K =5
and t = 1 to the signal from Fig. 1.

3 Median filter extensions

The recursive median filter replaces the standard me-
dian filter’s symmetric moving window wyj with the
recursive data window:

ry = {ykavyk7K+l7 vy Ty e 7-’L‘k+K71;xK}7 (4)

where y;_; represents the output at prior time k — j
of the standard median filter applied to the input
sequence {xy}. This extension exhibits a number
of interesting properties, including idempotence [4]—
i.e., a single application of the recursive median filter
maps it into the filter’s root set. It has also been
shown that the root set for the recursive median fil-
ter is identical to that for the standard median filter.

Weighted median filters replace each element zj_;
in the standard median filter’s moving data window
wy, with its w;-fold replicate w; ¢ x3_; for some pos-
itive integer weight w;. This extension increases
the median filter’s flexibility, but also complicates its
analysis: for example, no complete characterization
of the root sequences of arbitrarily weighted median
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Figure 4: Response of the recursive median filter with
K =5 to the signal from Fig. 1.

filters is known. The class of recursive weighted me-
dian filters adopts both of these modifications: the
recursive moving window ry defined in Eq. (4), and
the w;-fold replication of the weighted median filter.
Since this filter class includes both of the previous
ones as proper subsets, its flexibility is even greater,
as is the complexity of its analysis. For a more de-
tailed discussion of both of these filter classes, refer
to the survey by Yin et al. [7].

Fig. 4 shows the results obtained when the recur-
sive median filter with K = 5 is applied to the sim-
ulated data sequence shown in Fig. 1. Comparing
this filter response with Fig. 2 for the corresponding
nonrecursive filter, it appears that the distortion of
the sinusoidal component is more pronounced in the
noise-contaminated portion of the signal (i.e., for k
between 100 and 240).

2548



23rd European Signal Processing Conference (EUSIPCO)

] AL E
.‘;'.‘-':.':'_:
,
g - :

;\
- WA

0 100 200 300 400

<>

Figure 5: Response of the recursive Hampel filter
with K =5 and ¢t = 1 to the signal from Fig. 1.

4 Generalized Hampel filters

The generalized Hampel filters considered here are
obtained by replacing the standard median filter used
in defining the extensions discussed in Sec. 3 with
the Hampel filter described in Sec. 2. Due to space
limitations, we only consider the recursive Hampel
filter here, comparing it with both its nonrecursive
counterpart and the recursive median filter.

Fig. 5 shows the response of the recursive Hampel
filter with K = 5 and ¢t = 1 to the signal sequence
shown in Fig. 1. Comparing this plot with Fig. 4
for the recursive median filter, it is clear that the
recursive Hampel filter preserves the low-level sig-
nal details much better than the recursive median
filter does, especially for k between ~ 100 and ~ 200,
where the recursive median filter’s distortion is par-
ticularly pronounced. Careful comparison of Figs. 5
and 3 suggest that the recursive Hampel filter is more
aggressive than the nonrecursive filter, as in the case
of the median filter. A more detailed picture of the
effects of recursion for both of these filters may be
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Figure 6: Difference between the recursive and non-
recursive Hampel filter responses in Figs. 3 and 5.

seen by examining Figs. 6 ad 7, which show the dif-
ferences between the recursive and nonrecursive fil-
ter responses for the Hampel filter and the median
filter, respectively. In both cases, it is interesting to
note that these differences are more pronounced in
the presence of noise (i.e., for k& < 240) than in its
absence; in particular, there is no difference between
the Hampel filter responses in the absence of noise
(i.e., to the right of the dashed vertical line). In con-
trast, for the median filter, the differences are more
pronounced in the presence of noise and there are
clear differences in the absence of noise.

5 Summary

This paper has defined a class of filters obtained by
replacing the standard median filter with the Hampel
filter in a number of important median filter exten-
sions: the recursive median filter, the weighted me-
dian filter, and the recursive weighted median filter.
The results presented here are preliminary, based on
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Figure 7: Difference between the recursive and non-
recursive median filter responses in Figs. 2 and 4.

limited experimentation with a single example, but
they do suggest that the addition of the threshold pa-
rameter ¢ that defines the Hampel filter provides an
added degree of design flexibility. An obvious ques-
tion is how best to exploit this flexibility.

The class of generalized Hampel filters defined
here also raises a number of interesting characteri-
zation questions. In particular, essentially any char-
acterization result available for median filters and
their extensions—e.g., the idempotence of the recur-
sive median filter—leads directly to the more general
question: does this result still hold if the median fil-
ter on which it is based is replaced with an arbitrary
Hampel filter?

In addition, a new class of open questions that
is raised by the generalized Hampel filter class de-
scribed here concerns the implosion sequences intro-
duced in Sec. 2. Since all of the filters in this class
are based on the MAD scale, they are all subject to
implosion, but the conditions under which this oc-
curs may be very different for the different general-
izations of the basic Hampel filter. Thus, it would

be of interest to derive conditions—analogous to the
root sequence characterizations for the median filter
and its extensions—under which implosion occurs in
the different generalized Hampel filter structures.
Finally, it is worth noting that the results pre-
sented here are all based on filter implementations in
Python, an open-source programming language that
is becoming increasingly popular in scientific and en-
gineering applications because it is both free and ex-
tremely flexible. Detailed descriptions of median fil-
ter implementations in Python, along with all of the
median filter extensions described here are given in
the forthcoming book by Pearson and Gabbouj [5].
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