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ABSTRACT

Track-Before-Detect (TBD) is an effective approach to multi-
target tracking problems with low signal-to-noise (SNR) ra-
tio. In this paper we propose a novel Labeled Random Fi-
nite Set (RFS) solution to the multi-target TBD problem for
a generic pixel based measurement model. In particular, we
discuss the applicability of the Generalized Labeled Multi-
Bernoulli (GLMB) distribution to the TBD problem for low
SNR and closely spaced targets. In such case, the commonly
used separable targets assumption does not hold and a more
sophisticated algorithm is required. The proposed GLMB re-
cursion is effective in the sense that it matches the cardinality
distribution and Probability Hypothesis Density (PHD) func-
tion of the true joint posterior density. The approach is vali-
dated through simulation results in challenging scenarios.

1. INTRODUCTION

Multi-target tracking is often performed using data that have
been preprocessed into point measurements or detections [1].
Popular algorithms in multi-target tracking using detections
include the Probability Hypothesis Density (PHD) filter [2],
Cardinalized PHD (CPHD) filter [3], multi-Bernoulli filter
[4], the Multiple Hypotheses Tracking (MHT) algorithm [5],
the Joint Probabilistic Data Association (JPDA) [6], and
the recently introduced Generalized Labeled Multi-Bernoulli
(GLMB) and Labeled Multi-Bernoulli (LMB) trackers [7, 8].
Applications of these multi-target tracking solutions are dis-
cussed in [5, 9, 10] for radar/sonar measurements, in [11] for
computer vision surveillance, in [12] for autonomous vehicle
control, and in [13] for automotive safety problems.

In multi-target tracking problems with low signal-to-noise
(SNR) ratio, preprocessing the collected data might lead to
poor tracking performance. In this case, an effective solution
is to make use of all the information contained in the data
before the detection step. This approach is known as track-
before-detect (TBD) and was first investigated in [14–16].
Since then a number of TBD techniques have been proposed
for various applications [17–22]. The multi-Bernoulli filter
proposed in [20] is a Bayes optimal approach to multi-target

filtering using image data under separable assumption, which
has been successfully demonstrated in TBD using radar im-
ages [23, 24], and visual tracking [11, 25]. However, this ap-
proach is not a multi-target tracker because it rests on the
premise that targets are indistinguishable [7].

In this paper, we present a novel solution to the multi-
target TBD tracking problem based on Labeled Random
Finite Sets (RFSs) [7, 8]. Compared to the approach in [20],
using Labeled RFSs enables sequential estimation of target
trajectories. The proposed approach is based on a princi-
pled GLMB approximation of multi-target densities which
captures target dependencies [26] and does not require the
separable likelihood assumption commonly used in TBD
problems [19, 20, 23–25]. This allows the use of a more gen-
eral/precise measurement model which correctly describes
the sensor measurements in scenarios with closely spaced
targets. In this work, we consider a generic pixel-based mea-
surement model of interest for TBD applications in ground-
tracking [23]. This model has also been used in forward-
backward smoothing [24] and computer vision [11, 25].
Simulation results for low SNR and closely spaced targets
confirm the applicability of the proposed approach.

The paper is organized as follows: in Section II we briefly
recall the Bayesian multi-target tracking problem using La-
beled Random Finite Sets (RFS); in Section III we review
the pixel based measurement model for TBD and detail the
GLMB recursion; simulation results are discussed in Section
IV, while our conclusions and future research directions are
collected in Section V.

2. BAYESIAN TRACKING AND LABELING

Suppose that at time k, there are Nk objects with their
states denoted by xk,1, . . . , xk,Nk

, each taking values in
a state space X . An RFS is a random variable Xk =
{xk,1, . . . , xk,Nk

} that takes values in F(X ), the space
of all finite subsets of X . Mahler’s Finite Set Statistics
(FISST) provides powerful mathematical tools for dealing
with RFSs [1,27]. In this work we are interested in the multi-
object filtering density, which can be propagated in time by
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the multi-object Bayes filter as detailed in [1].

2.1. Labeled RFS

The labeled RFS model incorporates a unique label in the ob-
ject’s state vector to identify its trajectory [1]. The single-
object state space X is a Cartesian product X×L, where X
is the feature/kinematic space and L is the (discrete) label
space. A finite subset X of X×L has distinct labels if and
only if X and its labels {` : (x, `) ∈ X} have the same car-
dinality [7]. A recently developed class of labeled RFS is
the generalized labeled multi-Bernoulli (GLMB) family [7,8].
Under the standard multi-object model, the GLMB is a conju-
gate prior that is also closed under the Chapman-Kolmogorov
equation. Let L : X×L→ L be the projection L((x, `)) = `,
and ∆(X) ,δ|X|(|L(X)|) denote the distinct label indicator.
A GLMB is a RFS on X×L distributed according to [7, 8]:

π(X) = ∆(X)
∑
c∈C

w(c)(L(X))
[
p(c)
]X

, (2.1)

where C is a discrete index set,
[
p(c)
]X

is a density on X, and
w(c) is such that

∑
L⊆L

∑
c∈C w

(c)(L) = 1. The GLMB dis-
tribution is a mixture of multi-object exponentials, i.e. it uses
single-target densities to build a multi-target density with sta-
tistical dependence between the objects and a general cardi-
nality distribution. The cardinality distribution and PHD of a
GLMB are given by [7]

ρ(n) =
∑
c∈C

∑
L⊆L

δn(|L|)w(c)(L), (2.2)

v(x, `) =
∑
c∈C

p(c)(x, `)
∑
L⊆L

1L(`)w(c)(L). (2.3)

More details GLMB densities can be found in [7, 8].

2.2. Prediction

To ensure distinct labels we assign each target an ordered pair
of integers ` = (k, i), where k is the time of birth and i is
a unique index to distinguish targets born at the same time.
The label space for targets born at time k + 1 is denoted as
Lk+1, and the label space for targets at time k + 1 (includ-
ing those born prior to k + 1), denoted as L0:k+1, is con-
structed recursively by L0:k+1 = L0:k ∪ Lk+1 [7, 8]. The
set of newborn objects is distributed according to fB(Y) =

∆(Y)wB(L(Y)) [pB ]
Y, where the birth density fB is defined

on X×Lk+1. The multi-object state at the next time X is the
superposition of surviving objects and new born objects and
the multi-object transition kernel is given by [7]:

fk+1|k (X|X′) = fS(X∩(X×L0:k)|X′)fB(X−(X×L0:k)).

The predicted multi-object density is a GLMB given by [7]

πk+1|k(X) = ∆(X)
∑

I∈F(L0:k+1)

w
(I)

k+1|k(L(X))
[
p
(I)

k+1|k

]X
,

(2.4)

where,

w
(I)

k+1|k = w
(I)
S (I ∩ L0:k)wB(I ∩ Lk+1), (2.5)

w
(I)
S (L) = [η

(I)
S ]L

∑
J⊆L0:k

1J(L)[1− η(I)S ]J−Lw
(I)
k (J), (2.6)

p
(I)

k+1|k(x, `) = 1L0:k (`)p
(I)
S (x, `) + (1− 1L0:k (`))pB(x, `),

(2.7)

p
(I)
S (x, `) =

〈
pS(·, `)fk+1|k(x|·, `), p(I)k (·, `)

〉
η
(I)
S (`)

, (2.8)

η
(I)
S (`) =

〈
pS(·, `), p(I)k (·, `)

〉
. (2.9)

Eqs. (2.4)-(2.9) explicitly describes how to calculate the pa-
rameters of the predicted multi-object density from the pa-
rameters of the previous multi-object density [8].

2.3. Separable Likelihood Update

In multi-target TBD problems the measurement collected at
time k usually consists of an array of cells with a scalar inten-
sity, i.e. zk = [z1,k, . . . , zC,k] where C is the number of cells.
A common assumption in TBD solutions [19, 20, 23–25] is
that the templates T (·) of single targets do not overlap, i.e.
T (xi,k) ∩ T (xj,k) = ∅ for i 6= j, where T (xi,k) is the set
of cells illuminated by the target i. A separable multi-target
likelihood function gsep(zk|X) is such that:

gsep(zk|X) ∝
∏
x∈X

γz(x). (2.10)

If the multi-object prediction density πk|k−1 is a GLMB and
the multi-target likelihood is separable, then the multi-target
posterior πk|k is a GLMB [26]. The separable likelihood
assumption/approximation leads to closed form equations
which in turns yields an efficient implementation of the
GLMB recursion. However, the obtained GLMB tracker can
only guarantee satisfactory tracking performance in multi-
target scenarios with non-overlapping target templates.

3. GLMB UPDATE FOR TBD OF CLOSE TARGETS

In this section we describe the proposed GLMB update step
that uses a general multi-target likelihood function g(zk|X)
to describe the collected measurement at time k. In appli-
cations involving multiple closely-spaced targets, each pixel
intensity in the image observation can be affected by more
than one target. Thus, the likelihood is not separable. The ba-
sic idea of our approach is to: (1) perform Bayes update using
the general likelihood to obtain a joint posterior density; (2)
approximate the posterior density using the GLMB form; (3)
proceed to the next time step using the GLMB prediction.

3.1. TBD Measurement Model

At each time step k, the observation consists of an array of
cells with a scalar intensity, i.e. zk = [z1,k, . . . , zC,k]. The
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measurement zi,k in cell (i) is given by:

zi,k = hi,k(Xk) + ni (3.1)

hi,k(Xk) =
∑

xk∈Xk:i∈T (xk)

∆x∆yIk
2πσ2

h

h̃i,k(xk) (3.2)

h̃i,k(xk) = exp

(
− (∆xai − px,k)2 + (∆ybi − py,k)2

2σ2
h

)
(3.3)

where hi,k(Xk) is the target-generated intensity in cell (i);
Ik is the known source intensity, (∆x,∆y) are the cell side
lengths in (x, y) coordinates; (ai, bi) are discrete indices; σ2

h

is a blurring coefficient; and ni ∼ N (0, σ2) is zero-mean
white Gaussian noise. The sum over targets in eq. (3.2) mod-
els the fact that the intensity of each pixel can be affected
by the contribution of multiple closely-spaced targets. The
multi-object likelihood function g(zk|Xk) is given by:

g(zk|Xk) =

C∏
i=1

g(zi,k|Xk) (3.4)

g(zi,k|Xk) =

{
N (zi,k; 0, σ2), Xk = {∅}
N (zi,k;hi,k(Xk), σ2), otherwise

(3.5)

where the product in eq. (3.4) comes from the assumption
that the intensities zi,k are conditionally independent given
the multi-target state Xk. Notice that in practice we im-
plement the tracker using the likelihood ratio `(zi,k|Xk) =
g(zi,k|Xk)/g(zi,k|∅) so that the product in (3.4) is taken over
the cells in the union of the target templates, i.e.

`(zk|Xk) =
∏

i∈T (Xk)

g(zi,k|Xk)

g(zi,k|∅)
(3.6)

T (Xk) =T (x1,k) ∪ T (x2,k) ∪ . . . ∪ T (x|Xk|,k)

3.2. Non-Separable GLMB Update

We now detail the GLMB update step for a likelihood of the
form (3.2)-(3.5). Given the density πk|k−1 in GLMB form
and a non-separable likelihood g(zk|X), the Bayes update
step [1] yields the following joint posterior:

πk(X|zk) = ∆(X)
∑

I∈F(L0:k)

δI(L(X))w
(I)
k (zk)p

(I)
k (X|zk),

(3.7)
where

p
(I)
k (X|z) = g(zk|X)

[
p
(I)

k|k−1

]X
/ηzk (I), (3.8)

w
(I)
k (zk) ∝ ηzk (I)w

(I)

k|k−1, (3.9)

ηzk ({`1, . . . , `n}) =

ˆ
g(zk|{(x1, `1), . . . , (xn, `n)})×

n∏
i=1

p
{`1,...,`n}
k|k−1 (xi, `i)d (x1, . . . , xn) . (3.10)

From eq. (3.8), we see that each component
[
p
(I)
k|k−1

]X
from

the prior GLMB is updated into a joint density p(I)(X|zk)
and not into a multi-object exponential. From [26, Prop. 5],
the approximate GLMB π̂k(X|zk) is given by:

π̂k(X|zk) = ∆(X)
∑

I∈F(L0:k)

δI(L(X))ŵ
(I)
k

[
p̂
(I)
k (·|zk)

]X
,

(3.11)

p̂
({`,`1,...,`n})
k ((x, `)|zk) = (3.12)ˆ
p
({`,`1,...,`n})
k ({(x, `), (x1, `1), . . . , (xn, `n)}|zk)d(x1, . . . , xn),

ŵ
(I)
k = w

(I)
k . (3.13)

Notice that we only approximate the spatial distribution in
each component of the GLMB and retain the weighting terms
w

(I)
k (zk) from the joint update. In particular, retaining the

weights w(I)
k (zk) in eq. (3.13) leads to matching the cardinal-

ity distribution of the posterior density in (3.7) [26]. Further-
more, the approximation in (3.12) amounts to representing
each track ` ∈ I by the marginal density p(I)((x, `)), which
is obtained performing a standard marginalization of the joint
density p(I)({(x, `), (x1, `1), . . . , (xn, `n)}). Additional de-
tails and derivations of eqs.(3.11)-(3.13) can be found in [26].
In practice we use the likelihood ratio (3.6) in place of the
multi-object likelihood in eqs. (3.8)- (3.10), and approximate
the spatial densities using particles [8].

4. SIMULATION RESULTS

In this section we report the simulation results using the
newly proposed GLMB update step for non-separable like-
lihood function in TBD problems. Synthetic measurements
are generated using eqs. (3.1)-(3.3) and the new algorithm
is tested against the Cardinality Balanced MeMBer (CB-
MeMBer) filter presented in [20] and the GLMB tracker
using the separable likelihood approximation. Notice that the
expressions for the separable likelihood function are obtained
from eq. (3.2) by assuming that the single target templates do
not overlap, i.e. T (xi,k) ∩ T (xj,k) = ∅ for i 6= j, so that the
sum in (3.2) has at most one term.

Parameter Symbol Value
Cell Side Length (x) (∆x,∆y) (1, 1)
Blurring Coefficient σh 1

Sampling Time Ts 1 sec
Birth Uncertainty P0 diag ([1, 1, 1, 1])

Number of Particles Np 10000

Table 1. Parameters used in simulation.

The kinematic part of the single-target labeled state vector
xk = (xk, `k) at time k comprises the planar position and
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velocity vectors xk = [px,k, ṗx,k, py,k, ṗy,k]T in 2D Cartesian
coordinates. The single-target motion model is given by,

xk+1 = F xk + vk, vk ∼ N (0;Q)

where vk is a zero-mean Gaussian noise, Ts is the radar sam-
pling time, and the matrices F and Q define the Nearly Con-
stant Velocity (NCV) model [6]. We consider the scenario de-
picted in Fig. 4.1 where a maximum of 4 targets enter/leave
the surveillance area at different time instants. The scenario
parameters are reported in Tab. 1, and a snapshot of the TBD
measurement and true targets positions is depicted in Fig. 4.2
for the time instant k = 16.

Simulation results are reported in Fig. 4.3 in terms of
the Optimal Sub-Pattern Assignment (OSPA) [28] distance
and estimated number of targets. From the results we verify
that the proposed approach can solve the multi-target track-
ing problem with satisfactory performance in relatively low
SNR and closely spaced targets. Notice that when target are
closely spaced in the measurement space, i.e. the targets tem-
plates overlap, the CB-MeMBer and GLMB with separable
likelihood filters will generally lose targets due to merging
of tracks. Removing the merging procedure could solve this
problem, but it would also lead to an overestimated number of
targets. In fact, the merging procedure is needed since the sep-
arable likelihood model is not consistent with the birth model.
Specifically, if the SNR is low and/or the target speed is not
high compared to the sensor sampling time, the templates of
two target tracks from the same birth location at successive
time instant will always overlap. In this case the separable
likelihood lead to double counting of the measurement, thus
leading to an overestimated number of targets. The proposed
approximate GLMB recursion solves these problems since by
allowing the use of a non-separable likelihood, it avoids over-
estimating the number of targets at birth, and prevents under-
estimating closely spaced targets since it does not require a
merging procedure.
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Fig. 4.1. Scenario with closely spaced targets and SNR=4 dB.
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Fig. 4.2. Snapshot of the TBD measurement and true targets
positions at time instant k = 16.
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Fig. 4.3. OSPA distance (top) for the position estimates and
(bottom) Estimated number of targets.

5. CONCLUSIONS

In this paper, a novel approach to multi-target TBD with
closely spaced targets was presented. The solution is based
on GLMB distribution which is a principled approximation
to a general joint distribution with target dependencies. The
approach is of great interest in TBD problems with closely
spaced targets where the sensor returns cannot be correctly
described using a separable likelihood function. Simulation
results in challenging scenarios were presented to validate the
applicability of the proposed approach.
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