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ABSTRACT

A source signal is estimated using an associative memory
model (AMM) and used for separation matrix optimization
in linear blind source separation (BSS) to yield high quality
and less distorted speech. Linear-filtering-based BSS, such as
independent vector analysis (IVA), has been shown to be ef-
fective in sound source separation while avoiding non-linear
signal distortion. This technique, however, requires several
assumptions of sound sources being independent and gener-
ated from non-Gaussian distribution. We propose a method
for estimating a linear separation matrix without any assump-
tions about the sources by repeating the following two steps:
estimating non-distorted reference signals by using an AMM
and optimizing the separation matrix to minimize an error be-
tween the estimated signal and reference signal. Experimen-
tal comparisons carried out in simultaneous speech separation
suggest that the proposed method can reduce the residual dis-
tortion caused by IVA.

Index Terms— convolutional neural network, denoising
autoencoder, associative memory model, linear filtering, blind
source separation

1. INTRODUCTION

Time-frequency (TF) masking [1-3] and linear filtering [4—6]
are frequently used on multichannel blind source separation
(BSS). TF masking estimates a target source by using a non-
linear mask that passes only the TF components where the tar-
get source dominantly exists. TF masking has been shown to
be effective in source separation but yields unexpected harm-
ful non-linear distortions, which degrade the sound quality of
separated signals. Linear filtering, on the other hand, esti-
mates sound sources by using a linear separation matrix that
compensates for the effect of the mixing process of multiple
sound sources. This method can be advantageous over TF
masking in terms of the quality of the separated sounds be-
cause non-linear distortion, inevitable in TF masking, can be
avoided in linear filtering-based methods.

In general, the separation matrix for linear BSS is esti-
mated under the assumption that sound sources are statisti-
cally independent and generated from a non-Gaussian distri-
bution. Independent component analysis (ICA) [4] and inde-
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pendent vector analysis (IVA) [5] are well-known strategies
of this approach. These strategies, however, can degrade the
performance of the separation when the sound sources are not
independent. In addition, they do not take account of a prop-
erty of the sound sources explicitly. To handle the problem,
many attempts to use a prior distribution suitable for express-
ing the property have been made [7, 8]. More consideration,
however, is needed to overcome the assumption of the sound
sources being independent.

We propose a separation matrix optimization method
using a neural network-based associative memory model
(AMM) to achieve high-performance BSS without any as-
sumptions of sound sources. The proposed method optimizes
the separation matrix to minimize the error between the
distorted signal and corresponding reference signal, which
is estimated as an ideal (non-distorted) signal by using the
AMM. An alternating optimization is adopted: AMM-based
reference signal estimation using the current separation ma-
trix and separation matrix optimization using the reference
signal estimated in the previous step. Note that the proposed
method does not require any assumptions of sound sources
that are necessary in ICA and I'VA. In addition, less distortion
in the separated sounds can be expected because the proposed
method is based on linear filtering.

We used a denoising auto-encoder (DAE) [9] as an AMM.
A DAE can estimate a non-distorted signal from an input with
distortion and has been shown to be effective in dereverbera-
tion [10] and denoising [11]. The separated signal generally
contains distortion attributed to a residual of the interference
source and over-subtraction. A DAE-based AMM therefore
may be useful for reducing such distortion and yielding the
reference signal in the proposed method.

The spectra estimated using a DAE are known to be over-
smoothed. The DAE output therefore is not directly used
as an estimate of the target source but has been used in fil-
ter estimation, e.g., design of the Wiener filter [12] and TF
mask [13]. In contrast, we attempt to use the DAE output to
estimate the linear separation matrix for BSS.

The rest of the present paper is organized as follows. In
Section 2, we review linear filtering-based BSS. In Section 3,
we describe an algorithm of the proposed method. In Sec-
tion 4, we discuss experimental comparisons in sound source
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separation to verify the effectiveness of the proposed method.
Finally, we present our conclusion in Section 5.

2. LINEAR FILTERING-BASED BSS

This section briefly describes the method of estimating the
separation matrix for linear filtering-based BSS. The aim of
the BSS is to estimate an inverse filter to eliminate the effect
of the mixing process of multiple sound sources when this
process is unknown. Assume that N, sources are estimated
from N,, observations under the condition of Ny, < N,,.
The mixing process in the frequency domain is written as
Z(w,7) = H(w)S(w, ), where w and 7 denote the discrete
frequency and frame index, respectively; S(w, ) € Vet
denotes source signals, and Z(w,7) € CV*' and H(w) €
CNmxNs , observed signals and a mixing matrix (i.e., trans-
fer function). By applying the separation matrix W (w) €
NN 1o Z(w, ), the outputs Y (w,7) € CV=!| which are
the estimates of source spectra, are obtained as Y (w,7) =
W(w)Z(w,7) = W(w)H(w)S(w, 7).

In BSS, W (w) is estimated such that Y (w,7) could be
statistically independent. Particularly, IVA can yield an ad-
vantage over ICA in avoidance of the permutation problem.
IVA estimates W (w) by maximizing the independence be-
tween the vectors consisting of spectral components of the
estimated source. As a multivariate distribution, assumed as
a prior of the sound source, takes into account the relation
among frequencies, IVA is free from the permutation prob-
lem. Separation results, however, can be degraded when the
sound sources are not independent. In addition, the signal
estimated on the basis of source independency is not always
consistent with the signal of the original source.

3. SEPARATION MATRIX ESTIMATION USING
AMM

We attempt to associate a distorted speech with the corre-
sponding non-distorted speech using a neural network-based
AMM and apply the estimate of the non-distorted signal to
optimization of the separation matrix. In the present study,
a DAE was used on the AMM and the estimate of the non-
distorted signal was referred to as a reference signal. The sep-
aration matrix W (w) was estimated by minimizing the error
between the separation output Y (w, 7), which generally con-
tains a residual distortion, and the reference signal S(w, 7).
Figure 1 shows the proposed method. The method adopts an
alternating optimization approach that repeats the following
two steps: estimating the reference S(w, 7) using Y (w, 7) ob-
tained through the current W (w); and optimizing W (w) on
the basis of the error J(w) between S(w, 7) estimated in the
previous step and Y (w, 7). These two steps are repeated until
J(w) is converged. The rest of this section describes the de-
tails regarding reference spectrum estimation and separation
matrix optimization.
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Fig. 1. Schematic diagram of proposed method when two
sources are estimated from two observations. System devel-
oped consists of reference spectrum estimation and separa-
tion matrix optimization.

3.1. Reference signal estimation using AMM

A convolutional neural network (CNN) [14] is applied to a
DAE-based AMM that associates a signal containing a dis-
tortion with a non-distorted signal. Figure 2 illustrates a DAE
using a CNN. A CNN has a suitable structure to extract local
features from a TF pattern of a speech spectrum. In addition,
the distortion attributed to separation processing locally exists
on the TF pattern. We therefore expect that a DAE based on a
CNN can make it possible to eliminate such local distortions.

Partial TF patterns of 513 binsx 10 frames (8000 Hz x 160
ms) are extracted from a logarithmic power spectrum of dis-
torted speech at intervals of five frames. These patterns are
normalized such that the mean and standard deviation would
take zero and one, respectively, then used for the inputs of
the CNN. Each unit on the convolutional layer is obtained
by applying 94 convolutional filters of 30 binsx5 frames
(468.8 Hzx 80 ms) over the input TF pattern, where the con-
volutional window is shifted by 15 bins (234.4 Hz) and 2
frames (32 ms). Principle component analysis (PCA) is car-
ried out using all the partial TF patterns of 30 bins x5 frames
of training data. Then 94 eigenvectors of 30 binsx5 frames
are used as the convolutional filters, where the top 94 eigen-
values yield the cumulative contribution ratio of 95%. The
convolutional layer detects the same local pattern in the differ-
ent position of the TF pattern. The bottleneck layer extracts
higher-order features expressing the relation among differ-
ent positions of local patterns detected on the convolutional
layer. The dimensionality of the bottleneck features is 2,253.
To determine this dimensionality, PCA is applied to all the
9,306-dimensional convolutional layer outputs of the training
data and the resulting dimensionality is determined such that
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Fig. 2. Denoising auto-encoder-based associative memory
model. Logarithmic power spectra of target sources are esti-
mated from those of separated signal containing distortion.

the cumulative contribution ratio can be more than 95%. In
the output layer, the spectral estimates of 513 bins x 10 frames
are obtained.

The weights and biases in the CNN are determined by pre-
training based on the auto-encoder followed by fine-tuning.
Early stopping is conducted with development data to avoid
over-fitting. The CNN is trained with both of two types of
data pairs as follows:

e clean-clean: the non-distorted speech is used for both in-
put and supervisory signals.

e separated-clean: the separated speech obtained by ap-
plying IVA to the simultaneous speech is used for the in-
put signal and those of the corresponding non-distorted
signal are used for the supervisory signal.

3.2. Separation matrix optimization

We estimate a linear projection matrix M(w) € Vo<V

for eliminating the distortion included in Y (w, 7), yielding
Y (w,7) = M(w)Y (w, 7). Tt is ideal that Y (w, 7) be consis-
tent to the target source. The reference signal S(w, 7) there-
fore is used as Y (w, 7) for estimating M(w). In addition,
the separation matrix estimated through IVA, WIVA) (), is
used as the initial value for AMM-based optimization. In this
case, Y (w, 7) is written as

Y (w,7) = M(w)Y (w,7) = M(w)WIVA () Z(w, 7)

W(w)Z(w, ),

(1)
where W (w) = M(w)WIVA) (). Since M (w)WIVA) (W)
is a linear transformation, Eq. (1) represents linear BSS, i.e.,
the linear separation matrix W (w) is applied to the observed
signals Z(w, 7). The updated W (w) is obtained by estimat-
ing M(w) followed by calculating M (w)W(IVA) (w). Here,
M(w) is estimated to minimize the error between Y (w, 7)
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Algorithm 1 Algorithm for separation matrix optimization.

Require: Observed signal Z(w, 7)
Require: Initial separation matrix W V4 (1)
Require: #epochs for reference signal update N g, #epochs for filter
update Ny, learning rate p
M (w) = I (I: identity matrix).
YO (w,7) = WA (W) Z(w, 7).
Estimate Y©)(w, 7) from Y ©(w, 7) using AMM.
for:=0: Ng-1
for j=0: Np-1
Calculate gradient G (w) using Y ¥ (w, 7) and Y (w, 7).
MO () = MO (w) — 4GP (@)/[|GY) ().
end for
M(w) = MW (),
YD (w,7) = M(w)WIVAZ(w, 7).
Estimate Y+ (w, 7) from Y+ (w, 7) using AMM.
MO (w) = M(w).
end for
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Output: W (w) = M(w)W V4 ().

and S(w, 7). The error function is described as

N,

Jw) =

=1

2
v (2)

log [S(w, 7)|? — log [M(w)Y (w0, )

where N, denotes the number of frames. Then M (w) is opti-
mized using a gradient descent method as

G(w)

MER) = MO iy

3)
where G(w) = 9J(w)/OM*(w), and p, j and * denote the
learning rate, index of the update and complex conjugate op-

erator, respectively. The optimization algorithm used is sum-
marized in Algorithm 1.

4. SOURCE SEPARATION EXPERIMENT

Experimental comparisons were conducted in simultaneous
speech separation to verify the effectiveness of the proposed
method.

4.1. Evaluation items

The BSS methods we evaluated are as follows:
e IVA: auxiliary-function-based IVA [6]

e IVA-AMM (Proposed): separation matrix optimization
using an AMM in which the matrix is initialized by IVA

The signal-to-interference ratio (SIR) and signal-to-
distortion ratio (SDR) are used for speech quality measures.
The SIR represents the ratio of the target source compo-
nents to the components which is not included in the target
source out of the separated speech components. The SDR
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Fig. 3. Experimental environment.

represents the ratio of the target source components to the
distortion caused in separation processing. The SIR and SDR
are calculated as follows:

SIR [dB] =
N, N, N.
1 A SN 1Si(w, 7))
10log;, =1
NN, Z:Z: S N (1= 8i)[Vig (w, 7) 2
SDR [dB] =

N. No N,
1 Dot |Si(w, T)P?
NN Z 101logy N 5
stV 1 > 2y (1Si(w, 7)] = Yii(w, 7))

where S;(w, 7) denotes the i-th source component; Y;; (w, T)
denotes the estimate of the i-th source when only the j-th
source exists; IV, denotes the number of frequency bins; and
dy; returns one when ¢ = j and zero when ¢ # j.

The reference signal estimation and separation matrix op-
timization were repeated up to 30 and 5000 times, respec-
tively. The learning rate at the optimization step in (3) and
that in training the CNN were initialized by 0.0001 and 0.01,
respectively. The new-bob learning rate strategy was applied
to both stages. In training the CNN, the size of the mini-batch
was 100.

1=1 w=

4.2. Speech material

Speech materials for evaluation and training were generated
by convoluting a dry source with an impulse response. Fig-
ure 3 illustrates the acoustic environment used. Table 1 lists
the directions of the target and interference sources, 61 and 65,
used to yield the training, development, and test sets. The sig-
nals were assumed to be observed at a microphone array with
two microphones spaced 3 cm apart. The impulse response
was recorded in the environment shown in Fig. 3 to yield the
test set and obtained by delay-based approximation to yield
the training and development sets. In this experiment, the ef-
fect of the reflection and reverberation was removed from the
impulse response.

4.2.1. Evaluation

Thirty utterances spoken by ten females (three utterances for
each) were randomly selected from the Japanese newspaper
article sentence database for target and interference speech,
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Table 1. Direction of target and interference sources.

data set source direction of (61, 62)

training (-15,15), (-45,45), (-75,75), (-90,90)
development (-60,60)

testing (-30,30), (-30,0), (0,-30), (0,30), (30,0), (30,-30)

Table 2. Averaged SIR and averaged SDR.

Source angle SIR [dB] SDR [dB]
(61,02) [deg.] | IVA IVA-AMM | IVA IVA-AMM
(-30,30) 32.8 32.8 10.1 11.7
(-30,0) 30.6 30.7 9.4 9.8
(0,-30) 30.2 30.0 9.2 10.8
(0,30) 28.0 27.5 8.4 8.6
(30,0 26.7 26.4 8.0 8.7
(30,-30) 29.3 29.2 10.0 11.4

convoluted with the impulse response, then overlapped, yield-
ing simultaneous speech for evaluation.

4.2.2. CNN training

A CNN was trained on both the clean-clean and separated-
clean data pairs. Non-distorted speech utterances spoken by
four females in a phoneme-balanced sentence database were
used on the input and supervisory signals for training the
CNN. Those utterances were also used for the dry sources to
yield the simultaneous speech signals. Note that the speakers
in the training and development sets are different from those
used in the test set. Clean-clean consists of 1,800 utterances
spoken by four females (450 utterances for each). The sepa-
rated speech for separated-clean was obtained by applying
IVA to the utterances simultaneously spoken by two speak-
ers out of the four speakers. Four female speakers yield 12
pairs of speakers. In this case, nine pairs of speakers and one
pair of speakers were used on the training and development
sets, respectively. For the training set, 3,600 utterances of
separated speech (9 pairs x 2 speakers x 50 utterances for
each speaker x 4 conditions) were used for the input signals
and the corresponding 3,600 non-distorted utterances were
used for the supervisory signals. For the development set,
104 utterances of separated speech (1 pair x 2 speakers x 52
utterances for each speaker x 1 condition) were used for the
input signals.

4.3. Experimental results

Table 2 lists the SIR and SDR averaged over 30 utterances.
The SIRs of IVA-AMM were similar to those of IVA. These
results indicate that in the present experiment, IVA was good
enough to eliminate the interference components; therefore,
IVA-AMM could not demonstrate its effectiveness. The IVA-
AMM, on the other hand, out performed IVA in terms of the
SDR, irrespective of source locations. This suggests that IVA-
AMM can reduce the residual distortion attributed to IVA and
estimate the sound sources with high accuracy.

Figure 4 shows the specta of the (a) separated signal from
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IVA, (b) reference signal, (c) estimated signal from IVA-
AMM, and (d) target signal (ground truth). We can see that
IVA processing yielded unexpected harmful spectral distor-
tion over a range from 1.2 to 1.5 s and from O to 2 kHz (a);
such distortion does not appear in the reference spectrum es-
timated using the AMM (b); and the spectrum obtained using
IVA-AMM (c) was close to the target source spectrum (d).

5. CONCLUSION

We achieved high-quality BSS by incorporating AMM-based
reference signal estimation in separation matrix optimiza-
tion. The proposed method optimizes the separation matrix
such that the estimates could be brought close to the ideal
non-distorted signal estimated using the AMM and can ac-
curately estimate original sources without any assumptions
of the sources necessary in conventional ICA and IVA-based
BSS. Experimental comparisons carried out in simultaneous
speech separation demonstrated that the proposed method
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reduced the distortion caused by IVA.
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