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ABSTRACT

Understanding the point clouds of plants is crucial for the
plant phenotyping. However, it is challenging due to a num-
ber of factors such as complicated structures and imaging
noise. The primary objective of this project is to simplify the
complicated 3D structure of the plant point cloud data into
1D curved skeleton. The simplified skeleton will be helpful
for the structural analysis and understanding of plants of in-
terest and the measurements of their traits such as the areas,
perimeters of leaves, curvatures, and the lengths between dif-
ferent nodes. To this end, we propose a novel method to vox-
elize the given plant point cloud, extract the skeleton voxels,
and find the nearest neighbors to connect the skeleton points
as a connected representation. A number of different plant
point clouds are used to validate and compare the proposed
voxelization thinning method with a state-of-the-art one. Bet-
ter results have been obtained.

Index Terms— Plant phenotyping, point cloud, skeleton,
voxelization, thinning

1. INTRODUCTION

More and more researchers tend to believe that phenotyping
may play a crucial role in finding the functions of genes and
developing varieties of plants that can resist such stresses as
flooding, cold weather, drought, and windy weather and pro-
duce more yield. Such plants and crops are becoming even
more important when the population on the earth is increas-
ing and the arable land is decreasing. In [1], the fast fea-
ture persistent histogram [2] was extracted and used to distin-
guish the wheat ears from the wheat stems and the grapevine
leaves from the grapevine stems through the support vector
machines (SVM). It was found that the volumes of the wheat
ears are highly correlated to the wheat yield. This method
requires training data available and concludes that the points
in the transition areas between different organs are challeng-
ing for classification. It is reviewed in [3] how the genotypes
interact with the environment and the genetic variation may
need to be changed with different soil types, nutrient inputs,
and environmental stresses. To this end different experimen-
tal platforms and the field phenotyping systems need to be
developed for such investigation.
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The point clouds of plants can be built using various tech-
niques such as laser scanning [1] and structure from motion
[4]. How to interpret the reconstructed point clouds is then
crucial for the plant phenotyping. However, it is challeng-
ing due to a number of factors such as complicated structures,
self-occlusion, volumetric nature, the state of different organs
being close together and imaging noise. In this paper, we pro-
pose to extract the skeletons of plants, so that the understand-
ing of the whole point cloud can be advanced a step further
for plant phenotyping.

Skeleton is a fundamental one dimensional shape and be-
come more prevalent due to its simplicity in topology. A
skeleton can be easily manipulated and processed with mini-
mal computational cost in the area of researches for 3D pat-
tern matching, 3D recognition, 3D surface reconstruction and
structural analysis of objects of interest. The skeleton struc-
ture has been used in a wide range of applications like sur-
face reconstruction [5], shape matching [6], animation [7] and
mesh segmentation [8, 9] as well.

Different techniques can be used to extract the skeletons
of 3D shapes. Based on what data they operate, these tech-
niques can be classified into three main categories or a com-
bination of these: (i) Volumetric data operation: This class of
methods operates the volumetric data usually produced from
the voxelization of the given 3D data in the form of either
point clouds or meshes. A voxelization and thinning approach
was proposed in [10]. This is a topology preserving process
which carves a voxelized object layer by layer until medial or
centerline skeleton voxel is found. Each layer of 3D voxelized
object is mapped to a binary image and each voxel in 3D space
is assigned 1 for point presence and O for otherwise. The thin-
ning operation is performed to remove the object points until
the mid-point is reached. This can be done in parallel and this
approach is also called medial axis transform (MAT) or fire
front propagation; (ii) Mesh operation: This class of methods
operates 3D meshes and thus 3D surfaces. The method pro-
posed in [9] is based on Laplacian smoothing by shrinking
the boundary of the 3D object inwards until 1D skeleton is
obtained. But this method could be applicable only to clean
and well defined meshes without being corrupted by noise;
and (iii) 3D point cloud operation: This class of methods op-
erate the points themselves directly. In [11], it is proposed to
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(d) ©
Fig. 1. The main steps in the process of plant point cloud
skeletonization. The red and grey colors used were nothing
more than to represent some good visibility of voxels in the
scene. (a) Input points with texture colors; (b) Voxelization of
input points; (c) Skeletonized voxels after thinning; (d) Final
connected skeleton; (e) Final skeleton + input point cloud.

obtain a set of projected points through minimizing an objec-
tive function between these points and the input points reg-
ularized by the constraints that these points are collinear. In
order to find more accurate branch points, the support radius
would be gradually increased. The branch points are finally
connected. If there are gaps, then bridge points may need to
be found satisfying three constraints: collinear to the existing
branch, closest to the branch points with their distances being
small enough.

In this paper, we propose and adapt the voxelization and
thinning (VT) approach for the skeletonization of given plant
point clouds. While it satisfies our specific requirement for
plant structure analysis, it also has the promising features like
topology preservation, keeping the skeleton in the middle of
the plant structure, producing one voxel width skeleton and
on top of all with less processing time.

2. ANOVEL METHOD

There are four main processing steps in our proposed method
for the skeletonization of a given point cloud data: voxeliza-
tion of point cloud, voxel classification, voxel thinning and
voxel connection using the approximated nearest neighbor
(ANN) search. These are detailed in the following sections.

2.1. Voxelization of point cloud

Our voxelization process depends on only the points in the
input point cloud. A bounding box is first found that contains
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the whole point cloud data. The size of this bounding box
is calculated from subtracting maximum and minimum value
of points from X, Y and Z co-ordinates respectively. This
bounding box will be divided into an equal number of small
boxes in X, Y and Z directions. These equally divided small
boxes are called as voxels. This is a similar technique like
rasterization of 3D object. We set the size V of the voxels to
Vs = 0.04 in this paper, unless otherwise stated.

2.2. Voxel classification

Once the bounding box has been divided into voxels, we need
to separate the voxels with and without point cloud samples or
points within their volumes. This has been done by process-
ing each point sample to find the right voxel it belongs to. The
voxels which contain samples will be voted as 1 and retained
for further processing and remaining voxels will be ignored
from further processing. In this paper, we used a threshold
N, of samples inside a voxel to control when it should be
retained. This threshold can be determined by the noise cor-
rupting and density of points in the given point cloud. The
heavier the noise and the denser the points, the larger the value
this threshold has. Unless otherwise stated, we set Ny = 1 in
this paper. The retained voxels are used to represent voxelized
structure of the input 3D plant point cloud with regularly sam-
pled surfaces.

2.3. Voxels thinning

The next step is to apply a thinning process to find the medial
axis of the 3D voxels for the topological and geometrical rep-
resentation of the plants of interest. There are two types of ap-
proaches for 3D skeletonization: line skeletonization and sur-
face skeletonization. Both approaches are to carve the voxels
layer by layer until the minimum size is reached. The thin-
ning approach always removes the voxels to find the skeleton
without introducing a new one. In this paper, we adapted the
method in [10] for line skeletonization. This method designs
six masks along each of six directions: up, down, north, south,
east and west for the determination whether a voxel should be
deleted, retained, or do not care. Such masks are applied to
each voxel and delete all redundant neighboring voxels itera-
tively until no more voxels can be deleted. The adaption lies
in that instead of seeking the points on the median lines, we
calculate the averages of points along different directions, so
that consensus points can be found to resist imaging noise or
even fill in holes in the original point cloud.

2.4. Voxel connection

The thinned voxels found by the above thinning algorithm
need to be connected as a continuous and topological rep-
resentation of the structure of the plant of interest. To this
end, we used the ANN approach [12] to find a number of two
nearest neighbours of any thinned voxel of interest. The two
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(c) Voxel size=0.035; N,=2.

Fig. 2. Results of plant point cloud skeletonization with dif-
ferent voxel sizes and thresholds for denoising. From left to
right in each row: Input points, voxelized points, and finally
extracted skeleton.

neighbours are sorted according to their distances. Ideally if
the thinned vixels are evenly distributed, the two neighbours
lie on the two sides of the voxel of interest and one is already
on the skeleton and the other can be connected to the thinned
voxel of interest. If not, then three neighbours are found and
see whether there is a neighbour appearing on the other side
with a distance smaller than the diagonal size of the voxel. If
so, then it is connected to the thinned voxel of interest. Oth-
erwise, this thinned voxel of interest is treated as an end point
of the skeleton. This ANN approach uses a space partitioning
method to accelerate the search of the neighbouring voxels
and has a computational complexity of O(logm), where m is
the total number of voxels built.

The different steps in our proposed method are illustrated
in Figure 1. Figure 1(a) shows the loaded point cloud of
an Arobidopsis plant with textures for better visualization.
Figure 1(b) shows the voxelized point cloud. Figure 1(c)
shows skeletonized voxels after thinning. Figure 1(d) shows
the finally connected skeletons of the Arobidopsis plant. Fig-
ure 1(e) shows the superimposition of the extracted skeletons
onto the the original point cloud so that the quality of the ex-
tracted skeletons can be better appreciated.

The proposed method has a computational complexity of
O(n) for the point cloud voxelization, O(m) for voxel classi-
fication, O(km) for voxel thinning and O (m log m) for voxel
connection where n is the number of points in the given point
cloud and k is the number of iterations for voxel thinning.
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Thus, the overall computational complexity of the proposed
method is O(n + mlogm).

3. EXPERIMENTAL RESULTS

In this section, we validate our proposed method using the
point clouds constructed using the method proposed in [4].
While the point clouds include rich information about the
plant structures, some points are noisy introduced by the point
cloud reconstruction process. Note that such noisy points
could hardly be avoided, since the plant images always in-
clude areas without much textures for accurate feature extrac-
tion and matching.

3.1. Voxel size and samples for denoising

Most of the reconstructed point clouds are contaminated with
noise and contain outliers [4]. This is one of the major prob-
lems to be handled effectively and it is important to clear or
ignore the noisy points and outliers from our skeletonization
process. In our voxel based thinning approach we handled the
noise by ignoring the voxels which have fewer samples than
a threshold N, such as one or two samples. This threshold
can be configured between 0 and 10 by changing N accord-
ing to the input point cloud noise levels. By default this pa-
rameter was set to 1, in this case our voxelization algorithm
considered the voxels with only one sample as noisy ones and
thus will be ignored based on the observation that noisy points
usually sparsely distribute. If this threshold is set to 0, then
our algorithm does not eliminate any voxels with points. Low
level noise makes our algorithm to produce better skeletons.

Another important parameter is voxel size Vi. In our
voxel based thinning approach before applying the thinning
algorithm the input point cloud is voxelized. In order to
produce better output skeleton the voxel structure has to be
created without any holes in it. The voxel size V; has to be
changed based on the density of the points: if the input point
density is high then the voxel size should be decreased to
produce better skeleton. Whereas if the input point density is
low then the voxel size should be increased to reduce holes in
the voxelized structure. In our application the default voxel
size was V; = 0.04, but it can be configured by the user based
on the input point density.

Some experimental results are presented in Figure 2, il-
lustrating the impact of the threshold /N, and voxel size V; on
the output skeletons. Handling the noise is quite challenging
while voxelizing the point cloud. When the input point den-
sity is high, the noisy points can be detected and ignored eas-
ily because most of the voxels contain more samples than the
threshold Ng. This observation has been clearly demonstrated
by Figure 2. With the increase of the parameter Ny and de-
crease of the parameter Vs, the noisy points at the bottom left
hand side and top middle were removed and thus produced
more accurate skeletons. Whereas in the case of low density
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(a) Input points. (b) Finally extracted skeleton.

(d) Finally extracted skeleton.

(e) Input points. (f) Finally extracted skeleton.

(g) Input points.

h

(h) Finally extracted skeleton.

§

e

(i) Input points. (j) Finally extracted skeleton.

(1) Finally extracted skeleton.

(k) Input points.

Fig. 3. Input plant point clouds (left) and their skeletons (right)
extracted using different methods. Odd rows: L1 medial
method; Even rows: our VT method.
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point clouds, finding the noise is highly complicated because
ignoring the noisy voxels may eliminate the valid voxels as
well. This may lead to the existence of holes or hollow blocks
in the voxelized structure. Eventually the thinning algorithm
may produce some inaccurate output skeletons with discon-
nections.

3.2. Comparative study

Here our voxelization and thinning (VT) approach has been
tested and compared with L1-Medial skeletonization method
[11] on the extracted skeletons, memory usage and compu-
tational time. Since the L1-Medial method claimed as best
compared with other existing ones, by comparing our VT
method with the L.1-Medial method can clearly bring out the
advantages and disadvantages of our algorithm. Although
our primary goal is to skeletonize the 3D plant point cloud
data with narrow cylindrical structure and multiple branches,
here our algorithm is tested and compared with different point
clouds of plants with different structures and shapes. The fol-
lowing test cases with output images will clearly illustrate dif-
ferent performances between the two approaches.

The experimental results are presented in Figure 3 and Ta-
ble 1. Figure 3 shows that L.1-Medial skeletons extracted from
the Mimosa plant resemble our skeletons along with some mi-
nor topological discrepancy in the left lower branch. For the
Brassica and Arobidopsis input point clouds, the L1-Medial
algorithm failed to produce any result due to its limitation of
handling a huge number of input points (Brassica-1614842
and Arobidopsis-538066). This could be a major flaw or lim-
itation of the L1-Medial algorithm which cannot be used for
the extraction of highly complex plant structure skeletons. Yet
our voxel based thinning approach produced some excellent
results without any preprocessing. Although our algorithm
preserved excellent topology and connectivity in the area of
stems, branches and leaves, it still produced some inaccurate
result at the pot area, which is actually the clutter introduced
in the point cloud reconstruction process. Such clutter could
be removed in advance for better results.

The complexity, variation, and growth of the plants al-
ways render it difficult to collect ground truth. Even though
manual approaches may be used instead, they have to destroy
the plants and introduce errors during the process of measure-
ments due to the necessity of flattening the units of plants. In
this case, it is always difficult to quantify the performance of
different techniques. The reconstructed point clouds may be
used with careful operation in the future to collect the ground
truth.

The computational time of our method includes voxeliza-
tion and skeletonization processing time and that of the L1
medial method includes regularization, iterative contraction
and re-centering processing time. But here we compare only
the total time taken to produce output skeleton. Table 1 shows
that on the whole, our method is more computationally effi-
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Plant n Technique Time Memory CPU
Mimosa 40551 VT 1.14 128M 13%
L1 88.9 263M 24%
Brassica 1614842 VT 4.54 487TM 28%
L1 N/A N/A N/A
Arobidopsis 538066 VT 2.24 224M 23%
L1 N/A N/A N/A

Table 1. The computational time in seconds, memory usage in
MB, and CPU usage in percentage of different techniques for
the skeletonization of different plants represented in different
numbers n of points.

cient than the L1-medial algorithm in the sense of both com-
putational time and CPU usage.

4. CONCLUSION

In this paper, we proposed a voxelization and thinning (VT)
method for the extraction of the skeletons of plants from their
point clouds reconstructed using typical structure from mo-
tion methods [4]. While the reconstructed point clouds are
of high quality and include rich information about the plants
of interest, it is challenging to extract measurements of plants
from these point clouds due to various issues like imaging
noise and complicated structure. This paper advanced the
analysis of the point clouds a step further through extract-
ing the skeletons of the plants. While these skeletons them-
selves provide guidance for the classification of the points into
different categories of organs (stems, branches, leaves, flow-
ers, for example), some measurements of traits of the plants
can be performed directly on the skeletons for example, the
inter-node distances and the including angles between differ-
ent branches and the main stem. A comparative study based
on several point clouds of different plants with different struc-
tures and shapes shows that the proposed method outperforms
an existing one for the efficient and effective extraction of
high quality skeletons. Further research will be to incorporate
thinned voxel re-centering and hollow block filling technique
into our VT approach for more reliable and robust skeleton
extraction.
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