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ABSTRACT

Condition-based predictive maintenance can significantly
improve overall equipment effectiveness provided that ap-
propriate monitoring methods are used. Online condition
monitoring systems are customized to each type of machine
and need to be reconfigured when conditions change, which
is costly and requires expert knowledge. Basic feature ex-
traction methods limited to signal distribution functions and
spectra are commonly used, making it difficult to automat-
ically analyze and compare machine conditions. In this
paper, we investigate the possibility to automate the condition
monitoring process by continuously learning a dictionary of
optimized shift-invariant feature vectors using a well-known
sparse approximation method. We study how the feature vec-
tors learned from a vibration signal evolve over time when a
fault develops within a ball bearing of a rotating machine. We
quantify the adaptation rate of learned features and find that
this quantity changes significantly in the transitions between
normal and faulty states of operation of the ball bearing.

Index Terms— Condition monitoring, feature extraction,
dictionary learning, sparse representation, bearings

1. INTRODUCTION

Condition monitoring of machine elements is used to detect
faults, reduce machine downtime and improve overall equip-
ment effectiveness, for example by condition-based predictive
maintenance. The requirements on the methods employed to
achieve that go beyond fault detection, in particular in terms
of prediction of faults [1] and detection of abnormal oper-
ational conditions. Early detection and characterization of
emerging faults is a challenging problem because there are
many variables that affect the operation of the machine and
the characteristics of the fault. Maintenance operations rely
on time and frequency domain features for diagnosis [1]. Ex-
pert knowledge is often needed to interpret the features and
make decisions, which makes the process difficult to auto-
mate. Furthermore, condition monitoring methods are typi-
cally tuned to the application, the operating conditions and the
type and location of the fault. Therefore, such methods are
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expensive to maintain when machines have varying charac-
teristics and evolve over time, for example as a consequence
of maintenance and repair, which limits the scalability of the
approach. Also, it is difficult to predict all failure modes.
Similarly, approaches based on traditional pattern recognition
methods require substantial amounts of labeled training data
and the resulting methods are limited to the conditions for
which the method was designed and trained [2].

Sparse representation of signals has attracted considerable
interest in the last decade [3—6]. One type of sparse represen-
tation can be obtained by modeling signals as a linear super-
position of noise and a small number of atomic waveforms
(atoms) of particular shapes, amplitudes and shifts, so-called
shift-invariant sparse coding [7,8]. Using an approach known
as dictionary learning the atoms can also be optimized to the
signal [3, 6, 9], so that each particular atom represents struc-
tural features of the signal, which for example are excited by
different physical processes. Such approximations are of in-
creasing interest in signal processing with applications rang-
ing from denoising, source coding, source separation, and
signal acquisition. The problem of finding such sparse rep-
resentations and optimal atoms is NP-hard in general. There-
fore, suboptimal strategies based on convex relaxation, non-
convex (often gradient based) local optimization or greedy
search strategies are used in practise. Liu et al. [10] inves-
tigate the possibility that faults in a machine can be identified
with multiclass linear discriminant analysis using dictionaries
of atoms that are optimized to sets of signals corresponding
to different fault conditions of a rotating machine.

In this paper we complement the study by Liu et al. by
investigating how one dictionary of atoms changes over time
in an online condition monitoring scenario. The dictionary is
continuously optimized to a vibration signal, measured from
a machine, that evolves from a normal state of operation to
faulty conditions. We otherwise use a similar method for
dictionary learning that is suited for online monitoring [11],
and vibration signals from the same dataset [12]. The work
presented here is novel because it focuses on online monitor-
ing and the continuous evolution of an automatically learned
dictionary, rather than supervised learning of multiple dictio-
naries for each fault condition. We demonstrate that devia-
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tions from the normal state of the machine in principle can be
detected via monitoring of the learned dictionary over time.
We define an evolution rate for the atoms in a dictionary and
demonstrate that this rate decreases to low values after some
time of adaptation, and that it increases significantly when
faults are introduced in the system. The resulting atoms are
also useful for further classification and diagnosis of the con-
dition [10, 11]. We find that some atoms characterize the vi-
bration of the machine in both normal and abnormal opera-
tional conditions, while other waveforms are clearly associ-
ated with the faults. These preliminary results indicate that
online monitoring of a learned dictionary is a potentially use-
ful approach to zero-configuration fault detection. The ap-
proach also provides atoms representing inherent structural
features in the signal that can be used for diagnosis and pre-
diction.

2. SPARSE CODING AND DICTIONARY LEARNING

The model [11] used here was developed by Smith and
Lewicki [13], and it is inspired by former work on sparse
visual coding [14]. Smith and Lewicki discovered that
atoms learned from speech data closely resemble cochlear
impulse response functions (revcor filters), which indicates
that speech is adapted to the ear [13]. Our working hypothesis
is that features that characterize machines can be learned in
a similar manner. The model decomposes a signal, x(t), as
a linear superposition of noise and atomic waveforms with
compact support
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The functions ¢,,(t) are afoms that represent morphological
features of the signal and M indicates the total number of
such atoms. The variable N, refers to the number of in-
stances of atom ¢,,, and the temporal position and amplitude
of the ¢-th instance of atom ¢,,, are denoted by 7, ; and ap, ;,
respectively. The set of M atoms defines a dictionary
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The values of 7; and a; are determined with a matching
pursuit (MP) algorithm [15, 16] with maximum a posteriori
(MAP) optimization [17] for dictionary update. At each iter-
ation n, MP is used to decompose the signal in the following
steps:

1. Initialization: n = 0, Ry(t) = x(t);

2. calculate cross-correlations between signal, x(¢), and all

shift-invariant atoms, ¢, (t). The coefficients, a, ;, takes
the form
Rn(t)w)m(t - Tm,i)>7 (3)

Am,i = <
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where the temporal position, 7, ;, is determined by the
cross-correlation

Tm,i = arginax <Rn(t)|¢m(t - Tm,i)>; “4)
3. update of the residual
Rn+1(t) = Rn(t) - am,i(bm(t - Tmti); (5)

4. if the signal-to-residual ratio (SRR) or sparsity (number
of samples over n) reaches a predefined threshold the de-
composition process stops;

5. each atom of dictionary, ®, is updated with a gradient pro-
cedure outlined below;

6. continue decomposition of the next set of (partially over-
lapping) signal samples.

The problem to learn the dictionary, &, is the main chal-
lenge and opportunity of this approach, which makes it funda-
mentally different from traditional condition-monitoring ap-
proaches. The goal of this problem is to automatically calcu-
late an optimal set of atomic waveforms, ¢,,, in the dictio-
nary, ®, for a particular signal domain. The solution to this
problem can be obtained by rewriting Eq. (1) in probabilistic
form

p(]®) = / p(rla, ®)pla)da ~ plzla, ®)p(a),  (6)

where a is the maximum a posteriori (MAP) estimation of a,
4 = arg max p(alz, ®) = argmax p(z|a, ®)p(a), (7)
a a

that is generated by the MP [13]. The prior of the ampli-
tude, p(a), is defined to promote sparse coding in terms of
statistically independent atoms [14] and it assumes that the
likelihood , p(z|a, ®), is Gaussian. This results in a learning
algorithm that involves gradient ascent on the approximate
log data probability [13]

log(p(z|®))
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The gradient of each atom in the dictionary is proportional to
the sum of residuals corresponding to the MP activation of
that atom.

In order to use the gradient for optimization we introduce
a learning rate, or stepsize parameter, 1. Eq. (8) becomes

2Za”” — rm,,;‘ )

This means that the learning rate depends on the activation
rate of atoms, which implies that the learning rate of atoms
can be different, and that some atoms may not learn at all.
Several improvements of this methodology have been pro-
posed, including methods to enforce orthogonality in the MP.
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Fig. 1. Atoms learned from vibration signals corresponding to the BL, IR7 and IR 14 cases, respectively. The atoms are ordered
by ascending center frequencies in the IR14 case. All waveforms are normalized and have different lengths, see text.

Such methods improve the reconstruction accuracy signifi-
cantly for noiseless signals, but the effect on denoising perfor-
mance is moderate. Our method is comparable to that used by
Liu et al. [10] and is motivated by the relatively low complex-
ity and simplicity of the algorithm, which allows for online
condition monitoring experiments in embedded systems.

We are interested in quantitative changes of the learned
atoms resulting from changing conditions in a rotating ma-
chine. Skretting [18] proposes a dictionary distance measure
as a means to quantify the similarity between two dictionaries.
This approach is useful for diagnosis purposes but has limita-
tions in an online monitoring scenario because only a subset
of the atoms may change when a fault emerges, possibly re-
sulting in high dictionary similarity. Therefore, we define the
following evolution rate for each atom

e =1 — arg max crosscorr( g (t), ¢p(t — §)), (10)

where ¢, (t) is an atom of dictionary & at time ¢ and ¢y, (¢t — 0)
is the corresponding atom at a previous point in time, ¢ — 4.
This quantity is calculated for each atom and it indicates how
quickly individual atoms are changing. A value of zero means
no change at all, while a value close to one means that an atom
is uncorrelated with the most corresponding atom in the past.

3. CHARACTERIZATION OF ROTATING MACHINE
WITH FAULT IN ROLLING ELEMENT BEARING

We apply the MP with dictionary learning approach to vibra-
tion data from a rotating machine at the bearing data center
at Case Western Reserve University [12]. The vibration data
was generated with a test rig consisting of an electric motor,

1318

a torque transducer, a dynamometer and a ball bearing sup-
porting the motor shaft. An accelerometer located at the drive
end of the motor is used to record the vibration data. The ac-
celerometer is sampled 12000 times per second. During data
acquisition, the load varies between 0 HP and 3 HP, resulting
in a varying motor speed from 1800 to 1730 rpm. We con-
sider three different datasets in order to mimic the appearance
and growth of a defect in the bearing, thereby simulating the
evolution of the machine from a normal state of operation to
a faulty state of operation. First, MP with dictionary learning
is applied to 120 minutes of vibration data corresponding to a
normal, non-faulty bearing. This is referred to as the baseline
(BL) case and the resulting atoms are illustrated in Figure 1.
Next, the atoms are further adapted to 120 minutes of data
corresponding to a faulty bearing with a 7 mils (0.18 mm)
diameter fault on the inner race. We refer to this as the IR7
case and the resulting atoms are also illustrated in Figure 1.
Finally, the IR7 atoms are further adapted to 120 minutes of
vibration data corresponding to a faulty bearing with a 14 mils
(0.356 mm) fault on the inner race (IR14).

The vibration data is processed with our Matlab imple-
mentation of Smith and Lewicki’s algorithm [13]. The dic-
tionary initially contains sixteen atoms of length fifty sam-
pled from a Gaussian distribution with zero mean. Dictio-
nary learning is carried out using a signal window of 5 sec-
onds duration (60000 samples). The windows are sampled
randomly from the different load and rpm cases, thereby sim-
ulating a time-varying load on the rotating machine. Atoms
are allowed to grow in length when the tail RMS exceeds a
threshold [13] and are always normalized. MP is stopped at
one order of magnitude reduction in the data rate, or at a 12
dB SRR.
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Center freq. [kHz] Event rate [s]
Atom# BL 1IR7 1IR14 BL IR7 IR14
0.1 0.1 0.1 55 0 0

—_

2 0.1 0.1 0.1 62 0 0
3 1.1 1.1 0.4 99 0 72
4 02 02 0.4 73 0 3
5 1.0 09 0.5 66 12 49
6 07 07 0.7 64 3 27
7 1.0 10 1.1 50 4 41
8 39 39 1.9 0 3 63
9 07 15 1.9 58 59 64
10 31 20 2.4 1 116 70
11 44 32 3.1 0 67 76
12 27 33 32 0 100 74
13 24 35 32 0 99 69
14 1.1 3.6 3.4 67 108 69
15 28 3.1 3.5 0 86 89
16 0.8 32 3.6 62 107 82

Table 1. Center frequencies and event rates of learned atoms.

The dictionaries resulting from the BL, IR7 and IR14
cases are shown in Figure 1, each including the sixteen
atomic waveforms obtained at the end of a 120 minute adap-
tation time for each case. All waveforms are normalized and
have the same scale. Each panel in Figure 1 illustrates one
atom for the BL case (top), IR7 case (middle) and IR14 case
(bottom). Atoms 1, 2 and 4 reach approximately stationary
conditions after 120 minutes. Atoms 9, 10, 12, 13, 14, 15
and 16 change over time and enable distinction of the BL and
IR7 cases. The difference between the IR7 and IR14 cases
is evident from the time evolution of atoms 9, 10, 12 and 14.
Furthermore, the differences between atoms 3, 5, 6, 7 and 8
distinguish the BL and IR 14 cases.

Table 1 shows the center frequencies of the atoms in the
three cases, calculated as the mean value of the power spec-
tral density of each atom. By calculating the evolution rate
(rate of change) of the atoms we notice changes in the char-
acteristics of the rotating machine, which are associated with
the introduction of a fault in the bearing. Figure 2 shows the
evolution rate of all the atoms in the dictionary as defined by
Eq. (10) and using § = 10 minutes. Atom 3 stops evolving
when the IR7 case is introduced after 120 minutes, this is rep-
resented by the disappearing bold line between 120 and 240
minutes, which is a consequence of the vanishing event rate,
see Table 1. The center frequency of atom 3 is nearly identi-
cal in the BL and IR7 cases, see Table 1. Atom 3 continues
to adapt after 240 minutes when the IR14 case is introduced.
This is in agreement with Figure 1, which shows that atom
3 is similar for the BL and IR7 cases, while it has a differ-
ent shape in the IR14 case. Atom 13 is inactive during the
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Fig. 2. Evolution rate of atoms versus the time in minutes. The
occurrences of the IR7 fault after 120 minutes, and the IR14
fault after 240 minutes affect the evolution rate of some atoms
(bold lines) significantly, indicating that the characteristics of
the machine changes at these points in time.
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Fig. 3. Scatter plot of atom event rates versus center frequen-
cies of atoms for the BL, IR7 and IR14 cases. The event rates
are calculated during the last thirty minutes of vibration data
in each case. The introduction of a fault in the bearing leads to
learning and activation of atoms with high center frequency.

BL case, as indicated by the vanishing event rate in Table 1,
but it starts to adapt in the IR7 case and eventually attains an
impulse-like shape. In contrast, atom 2 adapts in the BL case
and thereafter remains unchanged, see Figure 1. The center
frequencies and event rates listed in Table 1, the evolution rate
displayed in Figure 2 and the dictionary illustrated in Figure 1
provide complementary information about the three different
operational conditions of the machine.

In Figure 3 we present a scatter plot of atom event rates
versus the center frequency for the three cases listed in Ta-
ble 1. It is evident that atoms with a lower center frequency
occur in the BL case, while the cases including a bearing
fault (IR7 and IR14) result in adaptation and activation of
atoms with higher center frequencies. Furthermore, a com-
parison between the IR7 and IR14 cases reveals differences
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in the event rates associated with some of the atoms. In sum-
mary, these results indicate that changes in the operational
conditions and characteristics of a rotating machine can be au-
tomatically detected using unsupervised dictionary learning.
Further work is required in the development of reliable mea-
sures for change detection during continuous monitoring of a
rotating machine, including methods to avoid false positives
associated with variations in the operation of the machine.

4. DISCUSSION

We investigate the possibility to automatically characterize a
rotating machine and detect when faults appear in the ma-
chine by monitoring a dictionary of learned atomic wave-
forms. We find that the shape, frequency and repetition char-
acteristics of the atoms depend on the operational conditions
of the machine considered here. Furthermore, we define the
rate of change of atoms (the atom evolution rate) and illus-
trate that it can be useful for automatic detection of faults.
These results motivate further experiments with more realis-
tic failure modes and varying operational conditions. Further
work is required to investigate and develop reliable measures
for automatic change detection, possibly using a complemen-
tary knowledge base including atoms learned from similar
machines with known operational conditions. In addition,
deep learning extensions can be investigated for classification
and prediction purposes. Dictionary learning offers a novel
approach to online condition monitoring, which unlike most
traditional techniques requires few assumptions about the ma-
chine and structure of the signal. Further work is needed to
study the usefulness of the method under more realistic con-
ditions such as speed, load and fault evolution. A method that
requires a minimum of configuration is needed to enable scal-
able condition monitoring in the era of the Internet of Things
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