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ABSTRACT

Electroencephalographic (EEG) signals are produced in brain
due to firing of the neurons. Any anomaly found in the EEG
indicates abnormality associated with brain functioning. The
efficacy of automated analysis of EEG depends on features
chosen to represent the time series, classifier used and quality
of training data. In this work, we present automated analy-
sis of EEG time series acquired from two different groups.
Non-linear features have been used here to capture the char-
acteristics of EEG in each case since it portrays the non-linear
dependencies of different parameters associated with EEG. In
the first case, we present the classification between alcoholics
and controls. In the second case, we present classification
between epileptic and controls. In the classification, we have
addressed the issue of quality of training data. In the proposed
scheme prior to classification, we filter the training data. This
approach led to minimum 10% improvement in the classifica-
tion accuracy.

Index Terms— EEG, Non-Linear Analysis, k-Means
Clustering, Support Vector Machine, Fuzzy k-NN

1. INTRODUCTION

Electroencephalography (EEG) signals are the electrical sig-
nals generated in the brain as a result of firing of neurons and
hence provides a non-invasive measure of brain functioning.
EEG is an important tool used in the diagnosis of various
brain conditions including effect of alcoholism and epilep-
tic seizure detection. Automatic diagnosis of various brain
conditions depend on quality of the training set available, as-
sumptions made about the data, features chosen to represent
the time series and the classifier employed [1]. Alongside,
several studies of the dis-orders also lend clues to be incorpo-
rated in the automation strategy.

In the problem of classification between alcoholics and non-
alcoholic subjects, well-known facts that long term effects
of alcohol abuse cause changes in brain like shrinkage, loss
of neuronal connections resulting in abnormalities, have
been utilized. EEGs show prominent differences between
alcoholics and non-alcoholics in theta power [2] and beta
power [3]. Sleep pattern also differs in alcoholics and non-
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alcoholics leading to differentiation between them using
sleep EEG [4]. Multiple gamma bands of EEG can be used
to distinguish alcoholics from non-alcoholics [5]. Slow alpha
(7.5-10 Hz), fast alpha (10.25-12.75 Hz), slow beta (13-19.5
Hz) and fast beta (19.75-26 Hz) were utilized in a study [6].
Epilepsy is a well-studied brain disorder that manifests its
signature in the EEG [7]. It is known that Epileptic seizures
are abnormal,unprovoked firing of neurons. Different types
of seizures have different characteristic patterns in the EEG.
Spikes, polyspikes, spike-and-wave complex, sharp waves
are the commonly seen rhythms in EEG pattern indicative of
epileptic seizure [8]. Identification of the presence of these
abnormalities from the given EEG data forms the base of any
automated epileptic seizure detection system.

In the earlier works reported on EEG analysis, simple linear
features [9] such as Entropy, Energy and statistical quanti-
ties such as median absolute deviation, inter-quartile range,
standard deviation, kurtosis, skewness have also been em-
ployed. The authors have reported accuracies of 96 to 88
% on classification of epileptic seizure versus normal using
classifiers such as Neural Networks (NN), Support Vector
Machines (SVM). Several later works have been reported
on analysis of epileptic EEGs that employ Time-frequency
analysis [10] utilizing short-time Fourier transforms [11] and
wavelet transforms [12]. On the other hand, several works
have analyzed in the non-linear framework, calculating Lya-
punov exponents, and have also combined wavelet analysis
and Lyapunov exponents [13]. NNs [14] were also used in
some approaches due to its learning ability but it suffered
from large noise and sensitivity issues. Adaptive Neuro-
Fuzzy Inference System (ANFIS) and SVM were also found
effective in the classification of epileptic and normal EEG.
Chaos Theory finds the hidden interior regular rules and re-
solve the variable in the nonlinear systems. A small change
at any one place of a chaotic system ends up being a drastic
change in its later state. No two states of the system will be
exactly same no matter how much time passes [15].

In this paper, we address the issue of the quality of training
data in non-linear framework. Here, we present EEG time-
series classification in two scenarios. In case (i), we look at
classification between alcoholics and non-alcoholics, while
in case (ii) we present classification between Epileptic and
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healthy controls. In both the cases, we use non-linear feature
sets and also incorporate the step of filtering training data,
prior to classification. A schematic illustrating the proposed
method is shown in Fig. 1.

In the proposed work, we illustrate the effectiveness in
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Fig. 1. Schematic Diagram

classification, after the refinement of training data, that en-
sures the removal of outliers. Here, we utilize the domain
knowledge that the available samples can only come from the
known set of classes.

The paper is divided into various sections. Section II details
the methods employed and describes the data utilized. Sec-
tion III discusses the results obtained. Section IV concludes
this paper.

2. MATERIALS & METHODS

The block diagram depicting the proposed methodology is
shown in the Fig. 2. In our experiments, the multichan-
nel EEG data, undergo dimensionality reduction to extract
the important channels containing information. From the
reduced-channel data, we compute non-linear features, which
are Hurst exponent, Approximate Entropy and Correlation
Dimension. These features have been reported to perform
well in EEG classification of different mental states [16].

In order to compute the non-linear features,the minimum
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embedding dimension and optimal embedding delay are to be
calculated and the phase space reconstruction is to be carried
out.

1. Embedding Dimension : The optimum embedding dimen-
sion [17] is the minimum dimension at which the charac-
teristics of the system completely unfolds. The idea is
to identify the false nearest neighbours that appear to be
nearest neighbours to a point due to the embedding di-
mension being too small. At the optimal embedding di-
mension, the false nearest neighbour drops to zero and the
system characteristics have been completely unfolded.

2. Embedding Delay : Minimum embedding dimension and

optimal embedding delay are required for phase space re-
construction. The optimum embedding delay is calculated
using Mutual information (MI) criteria [18].
The MI between X7 and X7, (m is the embedding de-
lay)quantifies the information about X7 ,,, presuming the
state X7 is known. Using Fraser and Swinney algorithm,
initially, the minimum and the maximum of the input time
series are found and the absolute value of their differ-
ence is partitioned into Ng equally sized bins (probability
states). The MI coefficient (I,,,) is computed as as

ZZPXT X7 (7))
1=t 1=J (1)
log P[Xr(i), X7 4m ()]

2 PXq (i) PXr4m(5)]

where the variables Ng,P[Xr(i)], P[Xr4m(j)] and
P[X1 (i), X1+m(J)] represents respectively the number
of probability states, the probability of X7 belonging to
the 7" probability state, the probability of X7, belong-
ing to the j*" probability state and the joint probability
of X7 belonging to the i probability state and X7,
belonging to the j** probability state simultaneously.
The probability P[X(4)] is computed as the ratio of total
number of data points of X7 belonging to probability
state i to the total number of data points in X . The other
probabilities are computed in a similar manner. Differ-
ent values of MI coefficients are obtained by varying the
embedding delaym. The optimum embedding delay is the
first minimum of MI coefficients (I,,,) Im since X4,
adds the largest amount of information to the informa-
tion already known due to knowledge about X7 at the
first minimum of MI coefficients I,,, without completely
losing the correlation between them.

3. Phase space reconstruction : EEG signal being non-linear
tends to gravitate towards specific regions in phase space
[19]. Chaoticity and complexity form the two main as-
pects of phase space. The method of delays is used for
phase space reconstruction when equations of system are
unknown. According to this method, a vector is formed
in an embedding space from time delayed values of the
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scalar inputs.
.y J?T} (2)

where dj and my are the optimum embedding dimension
and optimum embedding delay respectively. Takens em-
bedding [20] theorem states that if the sequence X1 con-
sists of scalar observations of the state of a dynamical
system, the time delay embedding provides a one-to-one
image of the original observations, provided embedding
dimension is large enough.

Xr = {xT—(doq)mo, TT—(dg—2)mgs **

The features set, comprising of Hurst exponent (H), Approxi-
mate entropy (ApEn) and Correlation dimension (v) are com-
puted as below :

1. Hurst Exponent (H) : Hurst exponent evaluates the self
similarity of a time series [21]. In EEG, Hurst exponent
is used to characterize the non-stationary behaviour. Ini-
tially the EEG data is divided into : two segments of half
the length of the original EEG data, four segments of 1/4th
length of the original EEG data and so on but minimum
length chosen for segment must be atleast 8 data points.
For each segment, mean is calculated and the segment is
centred. Cumulative deviation is calculated and the dif-
ference between maximum and minimum value of the cu-
mulative deviation is taken as the range(R). The rescaled
range is calculated as the ratio of the range and standard
deviation (S) of the centred segment.

log(R/S)
log(n)

R/S =rescaled range and n = length of the segment

H= 3)

2. Approximate Entropy (ApEn) : The approximate entropy
reflects the intra-cortical information flow in the brain ac-
cording to [22] and is a measure of complexity which en-
ables the quantification of the unpredictability of fluctu-
ations in EEG. Three important parameters are required
for the calculation of the approximate entropy, namely,
embedding dimension (dp), embedding time delay (mg)
and tolerance (). Tolerance is taken default as 0.2*stan-
dard deviation of the data and is the distance within which
neighbouring trajectories must lie. Embedding dimension
is calculated using false nearest neighbour method and
embedding time delay is calculated using mutual infor-
mation method.

The correlation integral can be calculated as [23]:

ey = 3% Qe =us 1)
i=1 N — (mo — 1)
where, i = 1,2,..., N — (mg — 1)dp, N is the length of
EEG, y;, y; are the vectors in phase space and ©(.) is a
heaviside function.
The approximate entropy is calculated as:

ApEn = ®™0(r) — ®™ot(r) 5)

“
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where,
1 N—(mo—l)
" (r) = ———— In[C™ (r 6)

3. Correlation Dimension(v) : The correlation dimension
represents the complexity of the system [24]. Taken’s
estimator is used to find the correlation dimension. Ac-
cordingly, a total of N.(N, — 1) /2 pairwise distances can
be obtained given a signal consisting of N, = N — mgdy
points, where mg and dy are minimum embedding dimen-
sion and optimum time delay respectively. The Correla-

tion Dimension is computed as v = —Z —1 where
N. N,
2 e [Yi(do) — Y;(do)|
J=— log ( J
LY g

(7
where Y;(do) and Yj(dy) are the phase space locations
of the i*" and j*" points respectively for the embedding
dimension dj, and ¢ is the radius of the measuring unit.

2.1. Quality of Training Data

Outliers present in the training set of any classification prob-
lem can cause misclassification since the classifiers learn fea-
tures of the outliers. To achieve greater accuracy rate, it is
necessary to remove outliers from the training set and enable
proper learning for the classifiers. The method proposed here
is outlier removal using k-means clustering.

Labelled training data are clustered using k-means clustering.
The original label of the data and the label assigned to it after
clustering are compared and those that do not match are iden-
tified as outliers and discarded. The remaining training sam-
ples are retained. To avoid loss of important information in
the training set, the k-means clustering is carried out ten times
independently. This ensures that the same samples are iden-
tified as outliers and discarded from the training set. Equal
number of training samples from each class are retained to
avoid any bias. The refined training data is used for classifi-
cation. For classification, two commonly used classifiers are
SVM and Fuzzy k-Nearest Neighbour.

2.2. Experimental Dataset

Alcoholic and control subject EEGs were obtained from
UCI Machine Learning Repository [25]. The 64-electrode
EEGs were sampled at 256 Hz. Total of 70 subject datasets
containing 10 trials each were used for the experiment. 60
subjects(60*10=600 EEG time series) were used for training
and remaining 10 subjects(10¥10=100 EEG time series) for
testing.

Epileptic Seizure and control EEG datasets were obtained
from Bonn University [26]. 65 EEG time series of single
channel control EEG and 65 data of single channel epileptic
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seizure EEG sampled at Hz were used. 70 EEG time se-
ries were used for training and remaining 60 time series for
testing.

2.3. Dimensionality Reduction

The multichannel alcoholic EEG data requires dimensionality
reduction to choose the most important channels for the clas-
sification problem. The method followed here is sparse prin-
cipal component analysis [27]. Fig. 3 illustrates the sparse
principal component analysis. The EEG channels are cen-
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Fig. 3. Sparse Principal Component Analysis

tred and normalized initially and covariance matrix is calcu-

lated. The normalized and centred input undergoes PCA to

give eigen vectors corresponding to each principal eigen val-

ues. The eigen vectors undergo the following :

1. Eigen vectors and covariance matrix are multiplied to give
the resulting variable referred to as beta

2. Betais then used to calculate the sparse loading B as

stop
2

where stop is the number of iteration and default is taken
as 300.

3. The sparse loading is multiplied with covariance matrix
and undergoes singular value decomposition to give the
output as UDV'T

4. The original eigen vector is updated using the eigen vec-
tors obtained from SVD as A,y = UVT

5. Repeat steps 1-4 till the stop criteria is achieved (300 iter-
ations).

B = sign(beta) * (|beta| — ) (8)

This led to a significant reduction in the number of EEG chan-
nels.

3. RESULTS & DISCUSSION

The multichannel EEG signal initially underwent dimension-
ality reduction to obtain the important channels. The features
extracted from the EEG were Hurst Exponent, Approximate
Entropy and Correlation Dimension. Two experiments were
carried out.
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Experiment 1 Accuracy(%) Accuracy(%)
Data type set SVM F k-NN
Alcohol vs Control
(Training = 600 time series, 90 80

test = 100 time series )
Epileptic seizure vs control
(Training = 70 time series, 78.33 76.6

test = 60 time series)

Table 1. Classification accuracy without filtering training data

Experiment 2 Accuracy(%) Accuracy(%)
Data type set SVM F k-NN
Alcohol vs Control
(Training = 540 time series, 100 100

test = 100 time series)
Epileptic seizure vs control
(Training = 50 time series, 95 88.33

test = 60 time series)

Table 2. Classification accuracy after filtering training data

1. First experiment : The training data were directly given
to classifier for learning which then classified the test data
into the classes associated with the classification problem.
In the alcohol vs control case, 70 subjects with 10 trials
each (total of 700 data) were used. The training constitute
60 subjects and test data constitute 10 subject. Accuracy
of 90% and 80% were obtained with SVM and Fuzzy k-
NN respectively. In epileptic seizure vs control, total of
130 time series were utilized. Among this, 70 were train-
ing data and remaining test data. SVM and Fuzzy k-NN
gave an accuracy of 78.33% and 76.6% respectively.

2. Second Experiment : The training data were normalized
and underwent filtering where those data which were fil-
tered incorrectly are eliminated. This refined data were
then used by the classifier for learning. In the alcohol vs
control case, the training data constituting 600 time series
were reduced to 540 time series after filtering. The test-
ing data comprised of 100 time series as in experiment 1.
SVM and Fuzzy k-NN gave an accuracy of 100% each.
In epileptic seizure vs control, the training data reduced
from 70 to 50 time series after filtering. The accuracy ob-
tained using SVM and Fuzzy k-NN were 95% and 88.3%
respectively.

The accuracy obtained in both experiments for two cases are
shown in Table. 1 and 2. Filtering removed the outliers
present in the training data which caused higher misclassi-
fication rate. An increase of about 10-20(%) was observed in
the accuracy with the use of filtering.

The outliers in the training data can occur as illustrated in
Fig.4. One variety of outliers denoted by ’$’ could occur close
to data samples belonging to class 1 while a second variety of
outliers denoted by *&’ could occur close to data samples be-
longing to class 2. A third variety of outliers denoted by *+’
could occur at the border close to both the classes, leading to
confusion among testing data. Addressing the issue of these
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Fig. 4. Example scenario of possible types of outliers

outliers, and utilizing them rather than discarding could lead
to better classification accuracy. This could be a possible ex-
tension of the proposed work. It is clear that merely increas-
ing the number of clusters to tackle outliers, would not be an
effective solution since it could alter the naturally-structured
clusters.

4. CONCLUSION

In this work filtering of training data for effective classifica-
tion of EEG time series is proposed. Clustering is utilized for
outlier removal using prior knowledge of number of classes.
The experiments carried out involve dimensionality reduction
and non-linear feature extraction. In the first the experiment,
the training data after feature extraction are used by classifier
for learning while in the second experiment the training data
undergo k-means clustering and the refined training data are
utilized by the classifier. Two cases are considered: Alcoholic
EEG vs Control and Epileptic Seizure EEG vs Control.

In both cases, it is observed that latter yielded higher accu-
racy than former. The outliers which cause increase in the
misclassification rate are eliminated by k-means clustering.
Accuracy have increased by about 10-20%. Clustering proves
to be an effective way of refining the training data by elimi-
nating the outlier and thus increasing the accuracy rate of the
experiment.
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