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ABSTRACT

In this paper, we propose a fast online background subtraction
algorithm detecting a contiguous foreground. The proposed
algorithm consists of a background model and a foreground
model. The background model is a regression based low rank
model. It seeks a low rank background subspace and repre-
sents the background as the linear combination of the basis
spanning the subspace. The foreground model promotes the
contiguity in the foreground detection. It encourages the fore-
ground to be detected as whole regions rather than separated
pixels. We formulate the background and foreground model
into a contiguously weighted linear regression problem. This
problem can be solved efficiently and it achieves an online
scheme. The experimental comparison with most recent al-
gorithms on the benchmark dataset demonstrates the high ef-
fectiveness of the proposed algorithm.

Index Terms— online background subtraction, contigui-
ty

1. INTRODUCTION

Background subtraction aims to separate the foreground
(moving objects) from background in video sequences. It
is one of the key steps for many video based applications
such as surveillance and navigation. The general framework
of background subtraction consists of two components: a
background model and a foreground model. The background
model estimates the potential background in videos, while
the foreground model finds foreground regions by comparing
between video frames and the estimated background. Based
on this framework, a significant number of algorithms have
been proposed [1-11], achieving an impressive performance.

One main challenge of background subtraction is how to
accurately model the dynamic background and distinguish be-
tween the background changing and foreground motion. Re-
cently, low rank model has shown its power for this challenge.
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Representative algorithms are Principal Component Pursuit
(PCP) [10] and PCP-like online algorithms [12—-16]. These al-
gorithms usually assume the potential background images of
a video lie in a low rank subspace, and the foreground region
is spatially sparse. It decomposes the video into a low rank
component as the background and a sparse component as the
foreground. However, although the background can be well
modeled using a low rank subspace, the foreground is some-
times not only pixel-level sparse but also contiguous regions.
Therefore, based on PCP, some algorithms further promote a
contiguous foreground detection using models like Markov
random field [11] and group sparsity [17]. These models
have shown an improved performance, but heavy computa-
tional burden is induced with the contiguous foreground mod-
el, even using an online scheme [17], restricting the usability
of such models in real applications.

In this paper, we propose a fast online background sub-
traction algorithm detecting a contiguous foreground. The al-
gorithm includes a background model and a foreground mod-
el. For background modeling, we use a regression based low
rank model. We assume that the potential background images
lie in a low rank subspace, so we expect that the background
of one frame can be represented as the linear combination of
the basis spanning the subspace. Therefore, we represent the
background of the current frame as the linear combination of
the estimated background of previous frames. In foreground
model, we use a contiguity constraint encouraging the fore-
ground to be detected as contiguous regions rather than sep-
arated pixels. The proposed algorithm can be solved cheaply
in terms of computational load.

An illustration of the proposed algorithm is shown in
Fig. 1. Fig. 1(a) shows a frame of a video sequence with a
tree waving in the background. We show the deviation be-
tween the frame and the background model computed by a
recent incremental PCP algorithm [15, 16] in Fig. 1(b), and
the deviation of our algorithm in Fig. 1(c). It can be seen
that in the background region, the proposed model has a low-
er deviation. It means that the proposed background model
represents better the changing background. In Fig. 1(d) and
Fig. 1(e), we show the foreground detection result by apply-
ing general hard thresholding to Fig. 1(c). It can be seen that
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Fig. 1: An illustration of the proposed algorithm. (a) A frame
of a video sequence with dynamic background (tree waving);
(b) the deviation between the frame and the background mod-
el in [15, 16]; (c) the deviation between the frame and our
background model; (d) the detected foreground with a low-
er threshold to (c); (e) the detected foreground with a higher
threshold to (c); (f) the detected foreground of our algorithm.

a lower threshold (Fig. 1(d)) cannot suppress the changing
background, but a higher threshold (Fig. 1(e)) eliminates the
foreground pixels similar to the background. In contrast, as
shown in Fig. 1(f), our algorithm obtains a more complete
foreground due to the promoted foreground contiguity.

Contribution. The contribution of this paper is that we
propose an online algorithm for background subtraction de-
tecting a contiguous foreground. We propose a formulation
including a background model and a foreground model. In
the background model, we represent the background of video
frames using linear regression in a low rank background sub-
space to better model the background changing. In the fore-
ground model, we explicitly formulate the contiguity of fore-
ground, encouraging the foreground to be detected as contigu-
ous regions rather than separated pixels. As this formulation
can be solved efficiently, it is able to run in an online scheme.

The rest of this paper is organised as follows. In sec-
tion 2, we describe the details of the proposed algorithm. In
section 3, we report the experimental results. Finally, in sec-
tion 4, we conclude the paper.

2. THE PROPOSED ONLINE BACKGROUND
SUBTRACTION ALGORITHM

2.1. Problem formulation

The problem of online background subtraction can be posed
as follows. In a video sequence, given a current input frame
Yy = [y1,¥2, ...,yn}T € R” and the background model esti-
mated using the previous frames, we aim to compute a fore-
ground mask s = [sq, o, ...,sn]T € {0,1}" for y, where
s; = Lif y; is detected as foreground, otherwise s; = 0.
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In background model, we assume the potential back-
ground images of a sequence lie in a low rank subspace.
Therefore, we represent the background of current frame us-
ing the basis spanning the subspace. Specifically, denote the
estimated background of the nearest k frames prior to the
current frame by B = [by, bo, ..., b,] € R™¥F (b; € R" is
a column vector of the estimated background of one of the
frames), we represent the background of the current frame by
Bz, where « € R” is a column vector of coefficients.

In foreground model, we use two priors for s. The first
one is the sparsity prior, as generally used in many low rank
based background subtraction algorithms [10, 12—-17]. The
sparsity prior assumes that s is sparse (most of the elements
in s are 0). It means the foreground region is small comparing
to the background. The other prior is the contiguity prior. It
restricts that in s, the elements with the same value should
be distributed as groups. It promotes the contiguity of the
detected foreground regions.

We formulate the above background and foreground mod-
el into three terms: a background fidelity term, a foreground
sparsity term and a foreground contiguity term.

Background fidelity term. The background fidelity term
is defined as follows:

fi@s)=5l0-s)om-Bal )

where 1 € R" is a column vector of ones and ® is element-
wise multiplication operator. Minimizing f; (z, s) restricts
that all background pixels are represented as the linear com-
bination of the basis in low rank background subspace (B).

Foreground sparsity term. The foreground sparsity term
is defined as follows:

fa(s) = [lsly 2)

As shown in literature [10, 11], ¢1-norm is able to induce s-
parsity. Hence, minimizing f5(s) leads to a sparse s.

Foreground contiguity term. The foreground contiguity
term is defined as follows:

fa(8) =YY Isi — sl = |Gsl, 3)
i jEN?
where N denotes the neighboring pixels of pixel i, and G is a
matrix indicating the neighborship of all pixels. Minimizing
f3(s) encourages neighboring pixels in s to have the same
value. Thus, the detected foreground will be distributed as
groups of pixels.
Combining the three terms, our formulation has the fol-
lowing form:

1 2
argmin g [[(1 — 5) @ (y — Bz)|l, +alls|, +5l|Gsll, )
s,z
where « and 3 are penalty parameters. We call it a contigu-
ously weighted linear regression, because the first term is a
weighted linear regression, and the third term constrains the
weights to be spatially contiguous.
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2.2. Algorithm

Equ. 4 has discrete variables in s and it is not convex in both
s and ®. As a result, it is difficult to solve s and x joint-
ly. Instead, we seek a solution by optimizing over s and x
alternatively. It leads to a x-subproblem and a s-subproblem.
x-subproblem. Let s = 1 — s € {0,1}". With s fixed,
minimizing Equ. 4 leads to the following problem:

arg min |3 ® (y — Ba)|[; (5)

s is binary, so we remove from y and B the rows correspond-
ing to the zero elements of s, and solve a linear system to seek
x.

s-subproblem. Let e = [e1,e9,...,e,]T =y — Bz €
R™. With «x fixed, we rewrite the objective function in Equ. 4:

11— s)® (y — Ba)|5 +alls||, + 8Gs|,

=g (a—el)si+B3 3 Isi—sjl+32 €

i i jJEN?

(6)

where the third term can be ignored since it is a constant with
x fixed. Equ. 6 is a first order Markov random field with
binary labels [18]. It can be solved using graph cuts [19].

With the parameters « and (5 fixed, alternating between x-
subproblem and s-subproblem leads to a sequence of mono-
tonically decreasing objective function values. Therefore, the
algorithm will converge to a local minimum. In our experi-
ment, the algorithm usually converges in 5-10 iterations.

Parameter setting. There are 3 parameters in the pro-
posed algorithm: k& which is the basis number in B, « and 3
in Equ. 4. We set k to 10 empirically (see Section 3.2).

As for a and 3, borrowing an idea from [11], we update
them as follows. In the first iteration, « is set to a large value,
a = 0.50% where o is the standard deviation of the current
frame. The reason is that Bz is an inaccurate background
estimation at the beginning of the algorithm (foreground is
not fully masked). It will lead to an inaccurate estimation of s.
Therefore, we apply a large penalty resulting a conservative
estimation of s. In each iteration, « is reduced by a factor of
0.5, since, along with more foreground region is found, Bx
becomes more accurate and we relax the penalty to encourage
more foreground detection. [ is set to S« in each iteration.

2.3. Background updating

After the foreground of the current frame y is detected, a key
problem to achieve an online scheme is how to update the low
rank background subspace B for the detections in the follow-
ing frames. In this paper, we update B based on an incremen-
tal PCP algorithm. Let Y’ € R™** be a matrix including the
nearest k frames to y with each of its column being a frame.
Assuming we have the low rank approximation of Y', we
seek the low rank approximation of [Y’, y] by the incremen-
tal PCP algorithm in [15, 16]. After the low rank approxima-
tion of y is computed, we estimate the background of y as a
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new basis for B by preserving the detected background pixels
in y and replacing the detected foreground pixels by their low
rank approximations. Then, we use this new basis to replace
the basis corresponding to the oldest frame in B.

Now, the problem becomes how to find an initial low rank
background subspace so that we can update it frame by frame
using the above described method. We employ the incremen-
tal initialization algorithm in [15, 16] to seek this subspace as
well as the low rank approximation of some initial frames (i.e.
initial ). This algorithm works in an incremental scheme
so it is much faster than the batch initialization.

We note that a more efficient way to update the back-
ground is to use Bx. We do not choose this way because it
exploits little new information additional to the current back-
ground subspace. In our experiment, we find that updating B
via the former method leads to a better performance.

3. EXPERIMENT

3.1. Dataset and evaluation

We use the I2R dataset! [20] which is a benchmark dataset. It
includes 9 challenging videos: Bootstrap (120 x 160 x 3057
frames, crowd scene), Campus (128 x 160 x 1439 frames,
waving trees), Curtain (128 x 160 x 2964 frames, waving
curtain), Escalator (130 x 160 x 3417 frames, moving es-
calator), Fountain (128 x 160 x 523 frames, fountain wa-
ter), hall (144 x 176 x 3548 frames, crowd scene), Lobby
(128 x 160 x 1546 frames, switching light), ShoppingMal-
1 (256 x 320 x 1286 frames, crowd scene), WaterSurface
(128 x 160 x 633 frames, water surface). Ground truth of
some frames is provided in the dataset. On each sequence,
we use the first 200 frames for initial background subspace
learning if needed, and we perform background subtraction
on the remaining frames.

We evaluate the algorithms by accuracy and speed. The
accuracy is evaluated by F-measurement defined as follows:

2 X precision X recall

F (N

precision + recall

where precision :% and Fe.call :%EFP;.TP, FN and
FP are the number of true positive, false negative and false
positive pixels, respectively. We use frames per second (FPS)

to evaluate the speed.

3.2. Comparison methods

We report comparisons with the following algorithms: mix-
ture of Gaussian (MoG) [2] as the baseline; Grasta? [14], Go-
sus® [17] and incPCP* [15, 16] as recent online low rank al-

1http://perception.i2r.afstar.edu.sg/bk_model/bk_index.
html

2http://sites.google.com/site/hejunzz/grasta

3http://pages.cs.wisc.edu/Njiaxu/projects/gosus/

4https://sites.google.com/a/istec.net/prodrig/Home/en/
pubs/incpcp
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gorithms. Moreover, we compare with two batch low rank
methods: PCP? [10] as a traditional low rank batch algorith-
m; Decolor® [11] as an improved PCP with the foreground
contiguity prior.

Most of the comparison methods need a threshold to pro-
duce foreground mask. For these algorithms, we use the first
image with ground truth in each video as the training image;
we choose the threshold to maximize the F-measurement on
the training image, and fix this threshold for the other images.
For other parameters in different algorithms (including % in
ours), we find an optimal option using the training images
and fix it for all the videos. We use fixed parameters for all
the videos since it is closer to the scenario of real applications.

3.3. Results and discussions

We report the mean F-measurement and FPS of all the meth-
ods on each video in Tab. 1, and we show some example
results in Fig. 2. Among the online methods, the one with
the highest F-measurement is marked red in Tab. 1, and the
second highest is marked blue. It can be seen that our algo-
rithm achieves the highest overall F-measurement among all
the online methods. We note that Gosus reports a promising
performance with tuned parameters for each video as in [17],
but when uniform parameter setting (closer to real scenario)
is used, its performance varies on each video and the overall
performance drops.

Comparing the accuracy between the online and batch
methods, we find that incPCP achieves a comparable F-
measurement to the original PCP, and Grasta, Gosus and our
algorithm outperform the original PCP. Since Grasta, Gosus
and our algorithm adopt a regression based low rank back-
ground model, it is reasonable to suggest that this model is
preferable comparing to the traditional low rank background
model. On the other hand, Decolor outperforms all oth-
er methods. The reason is the combination of a contiguity
foreground prior and the batch scheme.

As for speed, incPCP is the fastest algorithm. Our algo-
rithm is an online algorithm but it is not real time, because ad-
ditional computational cost is induced by the foreground con-
tiguity prior modeling a pixel-wise neighboring information.
However, comparing to the algorithms using this prior, our al-
gorithm is approximately 7.5 times faster than batch Decolor
algorithm and 6 times faster than online Gosus algorithm.

4. CONCLUSION

In this paper, we propose an online algorithm for background
subtraction including a regression based low rank background
model and a foreground model promoting the foreground con-
tiguity. We formulate the background and foreground model

5http: //perception.csl.illinois.edu/matrix—rank/sample_
code.html

6http: //fling.seas.upenn.edu/~xiaowz/dynamic/wordpress/
2p=144
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as a contiguously weighted linear regression problem. Ex-
perimental results show an improved accuracy comparing to
most recent low rank based online algorithms. Future work
may consider a region based foreground contiguity model to
achieve a better speed.
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*batch (off-line) method

#online method

Table 1: Performance of all methods compared on I2R dataset. Format: F-measurement (FPS).
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Fig. 2: Example results of comparison methods. (a) The original video frame (from top to bottom: Bootstrap, Curtain, Fountain,
Lobby); (b) the ground truth; (c) PCP; (d) Decolor; (e) MoG; (f) Grasta; (g) Gosus; (h) incPCP; (i) Proposed.
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