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ABSTRACT

This paper deals with a general class of blind source sepa-

ration methods for bilinear mixtures, using a structure based

on matrix factorization, which models the direct, i.e. mixing,

function, thus not requiring the analytical form of the inverse

model. This approach also initially does not set restrictions

on e.g. statistical independence, nonnegativity or sparsity, but

on linear independence of sources and some source products.

The separation principle used for adapting the parameters of

the above structure consists in fitting the observationswith the

above direct model. We prove (for two sources at this stage)

that this principle ensures separability, i.e. unique decompo-

sition. Associated criteria and algorithms are also described.

Performance is illustrated with preprocessed hyperspectral re-

mote sensing data. This also allows us to highlight potential

conditioning issues of some practical bilinear matrix factor-

ization (BMF) methods and to suggest how to extend them.

Index Terms— bilinear matrix factorization, direct mod-

eling, exact fit, separability (uniqueness of decomposition)

1. INTRODUCTION

Blind source separation (BSS) methods aim at restoring a set

of unknown source signals from a set of observed signals

which are mixtures of these source signals [2], [3]. In most

investigations, the above mixtures consist of linear combina-

tions of source signals. More recently, various works focused

on nonlinear mixing operators [2]. This especially concerns

linear-quadratic (LQ), including bilinear, memoryless opera-

tors, which appear in various application fields, such as re-

mote sensing [5], [6] and processing of scanned images in-

volving the show-through effect [4]. This non-linearity of the

mixing model is traditionally considered as an issue, coming

in addition to the usual difficulties already faced when dealing

with linear BSS. However, we hereafter introduce an origi-

nal position from this point of view, by showing that mixture

nonlinearity can be exploited in order to introduce new BSS

approaches that are not applicable to linear mixtures.

This work was partly supported by the French ANR project “HYEP

ANR 14-CE22-0016-01”, as from Jan. 2015.

More precisely, a complete BSS investigation consists in

defining five items: the considered mixing model, separating

structure, separation principle (e.g. ICA), separation criterion

(e.g. minimization of a given cost function) and separation al-

gorithm. Many investigations in the literature include original

contributions only for the above last item, i.e. for separation

algorithms. On the contrary, considering bilinearmixtures de-

fined in Section 2, our contributions hereafter cover a broader

scope. We first define Bilinear BSS methods based on Matrix

Factorization (MF), i.e. BMF methods, in Section 3. We then

analyze their theoretical separability properties and discuss

their practical conditioning in Section 4. Numerical simula-

tions with realistic data are then used in Section 5, not only to

illustrate the performance of a specific BMFmethod proposed

above but mainly to highlight conditioning properties of the

considered general class of BMF methods. Conclusions are

eventually drawn from this investigation in Section 6.

2. BILINEAR MIXING MODEL

Considering real-valued signals which depend on a discrete

variable n, the scalar form of the bilinear (memoryless, or

instantaneous) mixing model reads

xi(n) =

M
∑

j=1

aijsj(n) +

M−1
∑

j=1

M
∑

k=j+1

bijksj(n)sk(n)

∀ i ∈ {1, . . . , P} (1)

where xi(n) are the values of the P observed mixed sig-

nals for the sample index n and sj(n) are the values of the
M unknown source signals which yield these observations,

whereas aij and bijk are respectively the linear and quadratic

mixing coefficients (with unknown values in the blind case)

which define the considered source-to-observation transform.

A first matrix form of that model (1) reads

x(n) = As(n) + Bp(n) (2)

where the source and observation vectors are

s(n) = [s1(n), . . . , sM (n)]T (3)

x(n) = [x1(n), . . . , xP (n)]T , (4)
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where T stands for transpose and matrix A consists of the

mixing coefficients aij . The column vector p(n) is composed
of all source products sj(n)sk(n) of (1), i.e. with 1 ≤ j <

k ≤ M , arranged in a fixed, arbitrarily selected, order (see

e.g. [6] for the natural order). The matrix B is composed of

all entries bijk arranged so that i is the row index ofB and the

columns of B are indexed by (j, k) and arranged in the same
order as the source products sj(n)sk(n) in p(n).
An even more compact form of this model may be derived

by stacking row-wise the vectors s(n) and p(n) of sources
and source products in an extended vector

s̃(n) =

[

s(n)
p(n)

]

(5)

whereas the corresponding matrices A and B are stacked

column-wise in an extended matrix

Ã = [A B] . (6)

The bilinear mixing model (2) then yields

x(n) = Ãs̃(n). (7)

A third matrix-form model may eventually be derived by

stacking column-wise all available signal samples, which cor-

respond to n ranging from 1 to N , in the matrices

S̃ = [s̃(1), . . . , s̃(N)] (8)

X = [x(1), . . . , x(N)]. (9)

The single-samplemodel (7) thus yields its overall matrix ver-

sion

X = ÃS̃. (10)

3. BLIND SEPARATION METHODS BASED ON BMF

3.1. Methods using a source-constrained structure

Generally speaking, a separating system aims at providing es-

timates of source signals, by using adequately tuned param-

eters. Within this framework, a standard approach uses sys-

tems which receive the observations as their inputs and which

combine them according to a model which implements a class

of functions equal to the inverse of the class of functions cor-

responding to the mixing model. The parameter values of

such a system define one single function within this class and

should be selected so as to match those of the single function

corresponding to the considered mixture. The outputs of this

separating system thus yield estimates of the source signals.

Within the above overall framework, we here propose to

use a different approach, by building a system which aims

at modeling the direct, i.e. mixing, function. Since the lat-

ter function is defined by (10), the variables involved in our

separating structure consist of two matrices, C and D, which

respectively aim at estimating Ã and S̃ (possibly up to some

indeterminacies). The rows of S̃ and thus D may be seen

as vectors used to decompose the row vectors of X , whereas

Ã and thus C contain the coefficients of this decomposition.

Moreover, matrix S̃ is guaranteed to be constrained: as shown

by (5) and (8), only its topM rows are free, i.e. they contain

the source values, whereas all subsequent rows are element-

wise products of the above rows. Therefore, we set the same

constraint on the adaptive variableD of our separating struc-

ture. This means that the top M rows of D are master, i.e.

freely tuned, variables. TheseM row vectors are respectively

denoted as d1 to dM . On the contrary, all subsequent rows

ofD are slave variables, which are updated together with the

above top M rows, so as to contain element-wise products

dj ⊙ dk of those top M rows. These dj ⊙ dk products are

only stored for 1 ≤ j < k ≤ M and arranged in a fixed,

arbitrarily selected, order (see e.g. [6] for the natural order).

We already proposed to use the LQ version of the above

mixing model (10) and separating structure in previous in-

vestigations, e.g. [6]. However, we stress that our previous

approach was restricted to nonnegative sources and mixing

coefficients. On the contrary, the approach proposed in this

paper initially does not set any such restriction (nor does it

require the “sum-to-one” constraint used for some parameters

in [6] and in some partly similar methods for linear mixtures).

We then propose the following methods for adapting ma-

trices C andD of the above separating structure. The separa-

tion principle consists in updating these variables associated

with the direct model so that their product CD fits the obser-

vation matrix X , in order to ideally achieve CD = X . This

class of methods and their separation principle are therefore

called Bilinear Matrix Factorization, or BMF, hereafter. The

relevance of this separation principle specifically for bilinear

mixtures is justified in Section 4. Several criteria for adapting

C and D may then be derived from this separation principle.

The most natural one consists in minimizing the cost function

J1 = ||X − CD||F (11)

(or its square), where ||.||F stands for Frobenius norm. A
modified version of this BMF approach may be derived as

follows.

3.2. Methods using a doubly-constrained structure

In the above version of our methods, both C and the top

M rows of D are master, i.e. independently updated, vari-

ables. However, since this adaptation aims at minimizing

J1 = ||X − CD||F , a different adaptation scheme may be
used. In this scheme, only the top M rows of D are consid-

ered as master variables. In each occurence of the loop for

updating D, the slave variable C is set to its optimum value,

i.e. to its value which minimizes ||X − CD||F with respect
to C for the considered value of D. This optimum is nothing

but the least squares (LS) solution, i.e. (assuming D has full
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row rank) [7]

Copt = XDT (DDT )−1. (12)

Setting C = Copt in (11), the cost function to be optimized

(only with respect to the topM rows ofD) becomes

J2 = ||X(I − DT (DDT )−1D)||F (13)

(or its square). Using C = Copt is attractive, first because

the number of master variables adapted when using Copt and

therefore J2 is much lower than when using J1, so that the

searched space has a much lower dimension, which may de-

crease computational time and improve convergence proper-

ties. Moreover, C and J2 are thus defined by a closed-form

expression, which allows one to derive the gradient of J2 with

respect to the master part of D. This gradient may then be

used in gradient-based optimization algorithms.

The last step of the development of BMFmethods consists

in defining the considered separation algorithm(s). Various

algorithms may be derived for minimizing the above cost

functions J1 or preferrably J2. As suggested above, this e.g.

includes standard gradient descent and extended gradient-

based minimization methods, that we will report elsewhere.

Derivative-free optimization algorithms may also be used.

In particular, the algorithm used hereafter to minimize J2 is

the Nelder-Mead (NM) method, as implemented in the fmin-

search() Matlab function. The resulting version of our BMF

methods is therefore called BMF-LS-NM. Before presenting

associated test results, we analyze the theoretical properties

of BMF in general and we discuss its conditioning.

4. SEPARABILITY AND CONDITIONING

We here consider the overall BMF class of BSS methods, i.e.

not restricting ourselves to any resulting separation criterion

or algorithm. The separation principle thus consists in select-

ing the observation-modeling variables C andD so that their

productCD fits the observation matrixX . The above-defined

structure of S̃ andD is then of major importance: it is the rea-

son why one may hope this separating structure for bilinear

mixtures not to suffer from unacceptably high indetermina-

cies. This may first be intuitively explained as follows. For

an arbitrary value of the top M rows of D, the matrix prod-

uct CD yields row vectors which are combinations of theM

vectors d1 to dM and of their element-wise products dj ⊙ dk

with 1 ≤ j < k ≤ M . Let us e.g. consider the undesired case

when each vector dj is not collinear to one of the actual source

vectors which compose the top M rows of S̃, but is a linear

combination of the latter vectors. Then, onemay hope that the

following property is met: the vector products dj ⊙ dk have

a “complex form” and are thus outside the subspace spanned

by the actual source vectors and their element-wise products,

i.e. outside the subspace spanned by the rows of X . Then,

the product CD cannot exactly fit the observation matrix X ,

wathever the value of C. Therefore, conversely, the exact fit

CD = X may be hoped to be achieved only whenD extracts

the source signals, up to scaling and permutation.

We are going to give a proof for the above property but,

before this, we stress that this property is a new phenomenon,

i.e. only obtained thanks to the nonlinear nature of the con-

sidered mixture. On the contrary, if the mixingmodel is linear

andD is therefore restricted to its linear part, i.e. topM rows,

when each of these rows is an arbitrary linear combination of

the actual source vectors, the rows of CD are linear com-

binations of the actual source vectors, as the rows of X . If

the rows of D span the same subspace as X , the coefficients

in C can then always be selected so that CD = X exactly.

This linear version of the MF separation principle therefore

does not allow one to retrieve the sources: D may thus yield

any linear mixture of these sources. If trying to use the (lin-

ear) MF principle for the linear mixing model, the data must

therefore be further constrained. Such a constraint consists

in requesting all entries of C, D and X to be nonnegative,

thus leading to Nonnegative Matrix Factorization (NMF) [1],

although this nonnegativity constraint has been shown not to

be sufficient for ensuring the uniqueness of the linear NMF

decomposition.

We now prove the above-mentioned property for bilinear

mixtures, for M = 2 sources at this stage. The three rows
of D are then d1, d2 and d1 ⊙ d2. Similarly, S̃ consists of

the three row vectors s1, s2 and s1 ⊙ s2, which are here as-

sumed to be linearly independent, so that they span a three-

dimensional subspace. All row vectors of X belong to this

subspace, and we here assume that they actually span this sub-

space (this only requires X to contain at least three, linearly

independent, row vectors). If the exact fit conditionCD = X

is met, the subspace spanned by {d1, d2, d1 ⊙ d2} is equal to
the subspace spanned by {s1, s2, s1⊙s2}, and therefore i) the
vectors d1, d2 and d1⊙d2 are non-zero, linearly independent,

and ii) each of them is a linear combination of the vectors s1,

s2 and s1⊙s2. Property ii) above yields three conditions. The

first two of them read

d1 = e11s1 + e12s2 + e13s1 ⊙ s2 (14)

d2 = e21s1 + e22s2 + e23s1 ⊙ s2 (15)

and they therefore entail

d1 ⊙ d2 = e11e21s1 ⊙ s1 + (e11e22 + e12e21)s1 ⊙ s2

+e12e22s2 ⊙ s2

+(e11e23 + e13e21)s1 ⊙ s1 ⊙ s2

+(e12e23 + e13e22)s1 ⊙ s2 ⊙ s2

+e13e23s1 ⊙ s1 ⊙ s2 ⊙ s2. (16)

Moreover, if the eight vectors in the set {s1, s2, s1 ⊙ s1, s1 ⊙
s2, s2 ⊙ s2, s1 ⊙ s1 ⊙ s2, s1 ⊙ s2 ⊙ s2, s1 ⊙ s1 ⊙ s2 ⊙ s2} are
linearly independent, the third condition contained in Prop-

erty ii) above entails that all coefficients in (16) except the
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one corresponding to s1 ⊙ s2 are null, i.e.

e11e21 = 0 (17)

e12e22 = 0 (18)

e11e23 + e13e21 = 0 (19)

e12e23 + e13e22 = 0 (20)

e13e23 = 0. (21)

Eq. (17) has two solutions. The first one is

e11 = 0. (22)

Eq. (18)-(21) then become

e12e22 = 0 (23)

e13e21 = 0 (24)

e12e23 + e13e22 = 0 (25)

e13e23 = 0. (26)

Let us assume that e13 6= 0. Then, (24)-(26) and (15) are
easily shown to yield d2 = 0, which is not true, as stated
above. Therefore

e13 = 0. (27)

Eq. (23)-(26) then become

e12e22 = 0 (28)

e12e23 = 0. (29)

Moreover, e12 = 0 is not possible because, togetherwith (22),
(27) and (14), it would yield d1 = 0. Since e12 6= 0, (28), (29)
and (15) yield

d2 = e21s1. (30)

Besides, (22), (27) and (15) yield

d1 = e12s2. (31)

Conversely, any couple of vectors defined by (30)-(31) with

arbitrary non-zero coefficients eij is indeed a solution to the

problem, i.e. it allows CD to exactly fit X , because the sets

{d1, d2, d1 ⊙ d2} and {s1, s2, s1 ⊙ s2} then span the same
subspace.

It may be shown in the same way that the second solution

of (17), i.e. e21 = 0, leads to the solution d1 = e11s1 and

d2 = e22s2. As an overall result, under the above assump-

tions, the condition set by the BMF separation principle, i.e.

CD = X , is met if and only if the considered separating

structure restores the sources up to scale factors and permuta-

tion. In other words, this BMF separation principle then en-

sures separability (i.e. uniqueness of the BMF decomposition

up to the above indeterminacies). Unlike in the linear case,

this separability is obtained without setting such constraints

as nonnegativity of the data.

The above result only concerns the considered theoret-

ical separation principle and the associated exact equality

CD = X . When then moving to practical BMF methods

e.g. involving the criteria based on (11) or preferrably (13),

and associated algorithms, one should in addition take into

account the numerical conditioning of the considered cost

functions. In other words, the above analysis showed that, if

CD is made exactly equal to X , then D exactly restores the

source vectors (up to acceptable indeterminacies), but the fol-

lowing question is still open: if CD is only made to get close

to X , with a given accuracy (as when using practical BMF

algorithms), then with which accuracy does D restore the

source vectors ? One way to get insight into this topic con-

sists in analyzing the convergence points of BMF algorithms,

as will now be illustrated.

5. TEST RESULTS

As an example, we here apply the above approach to synthetic

but realistic bilinear mixtures, corresponding to the remote

sensing application described in [5], [6]. The considered two

source vectors s1 and s2 are reflectance spectra, derived from

the USGS hyperspectral database: each source sample is here

obtained as the average of 200 adjacent samples of an original

USGS spectrum. The source vectors are thus reduced to 10

samples, which allows us to investigate how the proposed ap-

proach behaves in the difficult case when limited information

is available about the sources. Similarly, only 10 mixtures of

these sources are used (this models 10 pixels of an observed

image). Based on the physical mixing model derived in [5],

the linear mixing coefficients aij are randomly, uniformly,

drawn over [0, 1] and then rescaled so as to sum to one in
each observed vector, whereas the second-order coefficients

bijk are uniformly drawn over [0, 0.2]. 100 Monte-Carlo tests
are performed with the above data, using the above-defined

BMF-LS-NM algorithm. Its master variables d1 and d2 are

initialized with values respectively equal to s1 and s2 plus

random noise, with uniform distribution over [−0.05, 0.05].
Performance is analyzed by first computing two error pa-

rameters involving the above initial value of D and the asso-

ciated value Copt of C, defined by (12). First, the normalized

root-mean-square error for sources is defined as

Esrc =

√

min
i6=j∈{1,2}

(Fij)

√

||s1||2 + ||s2||2
(32)

where Fij is equal to:

min
ǫ1=±1

(

||s1 + ǫ1
||s1||

||di||
di||

2

)

+ min
ǫ2=±1

(

||s2 + ǫ2
||s2||

||dj ||
dj ||

2

)

.

Then, the normalized reconstruction error is defined as

Erecons =
||X − CoptD||F

||X ||F
. (33)

The corresponding scatter plot in the (Esrc, Erecons) plane,
for all 100 Monte-Carlo tests, is shown in Fig. 1.
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Fig. 1. Scatter plot in (Esrc, Erecons) plane, before running
BMF-LS-NM.

The values of the above two performance parameters are

then considered for the value of D obtained after BMF-LS-

NM converged, and for the associated value Copt of C. The

corresponding scatter plot is shown in Fig. 2.
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Fig. 2. Scatter plot in (Esrc, Erecons) plane, after running
BMF-LS-NM.

Comparing the above two plots first proves that BMF-LS-

NM always succeeds in strongly decreasing the cost function

J2, as expected. Moreover, this shows that, despite this good

fit of CD with respect to X obtained after convergence of

BMF-LS-NM, the source estimates obtained in the top rows

of D may then still be significantly different from the actual

(rescaled and permuted) source vectors, thus leading to non-

negligible values of Esrc
1. This conditioning issue is dis-

cussed hereafter.

1The bottom part of Fig. 2 shows that this problem cannot be avoided by

selecting the runs of BMF-LS-NM yielding the lowest reconstruction error.

6. CONCLUSION

The general BMF class of BSS methods addressed in this pa-

per is attractive because 1) it initially does not require the sta-

tistical independence, nonnegativity or sparsity of the source

signals but only linear independence of sources and some

element-wise source products (see the constraint defined af-

ter (16)), 2) it does not require knowing the analytical form

of the inverse of the mixing model but only of the direct, i.e.

mixing, model, 3) its separation principle was shown (for 2

sources at this stage) to ensure theoretical separability (i.e.

uniqueness of decomposition up to the above indetermina-

cies). However, despite that separability, some corresponding

practical cost functions and algorithms may lead to numerical

conditioning issues, as illustrated above for our BMF-LS-NM

method. This suggests us to further investigate the cost func-

tions and algorithms that may be developed for the general

class of BMF methods and/or to add constraints to these cost

functions. These constraints for practical conditioning should

be contrasted with those required for theoretical separability

when addressing linear mixtures. For bilinear mixtures too,

a natural constraint is nonnegativity, that we started to inves-

tigate in [6]. We will report about other constraints in future

papers also dealing with BMF methods.

REFERENCES

[1] A. Cichocki, R. Zdunek, A. H. Phan, S.-I. Amari, “Non-

negative matrix and tensor factorizations. Applications

to exploratory multi-way data analysis and blind source

separation”, Wiley, Chichester, UK, 2009.

[2] P. Comon and C. Jutten Eds, “Handbook of blind source

separation. Independent component analysis and appli-

cations”, Academic Press, Oxford, UK, 2010.

[3] Y. Deville, “Traitement du signal : signaux temporels
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