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ABSTRACT
We consider the problem of multiple correlated sparse signals
reconstruction and propose a new implementation of struc-
tured sparsity through a reweighting scheme. We present
a particular application for diffusion Magnetic Resonance
Imaging data and show how this procedure can be used for fi-
bre orientation reconstruction in the white matter of the brain.
In that framework, our structured sparsity prior can be used
to exploit the fundamental coherence between fibre directions
in neighbour voxels. Our method approaches the `0 minimi-
sation through a reweighted `1-minimisation scheme. The
weights are here defined in such a way to promote correlated
sparsity between neighbour signals.

Index Terms— structured sparsity, convex optimisation,
diffusion MRI

1. INTRODUCTION

Diffusion Magnetic Resonance Imaging (dMRI) is an imag-
ing modality which is sensitive to the Brownian motion of
water molecules in living tissues. The anisotropic diffusion
of water molecules can be measured to study the structure of
spatial order in living organs in a non-invasive way. Since the
axon membranes are the main responsible of the anisotropy of
the water displacements in the white matter (WM), dMRI rep-
resents an effective technique to map the structural connectiv-
ity of the brain in vivo. By applying a pair of gradient pulses,
MRI sequences become sensitive to motional processes, such
as diffusion. These diffusion gradients are represented as 3D-
vectors ~q – oriented in the direction of the diffusion and with
a magnitude proportional to the gradient strength– and they
determine the 3D sampling space, commonly named after as
q-space. Despite all its potential, the acquisition of diffu-
sion MRI sequences is also known to be significantly time-
consuming, restricting its use, for instance, in clinical prac-
tice. Thus, faster acquisitions, relying on as few q-sampling
points as possible represents a major challenge in the field.

A great variety of approaches have been proposed for
tackling the problem of intra-voxel fibre orientation estima-
tion. In this paper, we focus on spherical deconvolution (SD)

methods [1–3] which have become very popular in the field
of local reconstruction since they can recover the fibre con-
figuration with a relatively small number of points. In [4],
the reader can find the formal equations describing the rela-
tionship between the diffusion signal and the fibre orientation
distribution function (FOD), a real-valued function on the unit
sphere that indicates the orientation and the volume fraction
of the fibre populations in a voxel. In a nutshell, the diffu-
sion signal can be expressed as the convolution of a response
function, or kernel, with the FOD as:

y = Φx+ η. (1)

In (1), x ∈ Rn
+ stands for the FOD, y ∈ Rm

+ is the vector of
measurements, Φ is the linear measurement operator (or dic-
tionary) and η represents the acquisition noise. A set of the
Diffusion Basis Functions [5] are a common choice to expand
dictionary Φ. In that basis, each atom represents the diffusion
profile corresponding to a single fibre rotated in a discrete set
of n different directions equally distributed on the sphere. The
components xi of our function of interest – the FOD – can be
identified with the volume fraction of the fibre, oriented after
the direction corresponding to the i-th atom of dictionary Φ.
Therefore, by construction, x is a non-negative vector with∑

i xi = 1. At the current imaging resolution, at maximum
2–3 fibres per voxel can be distinguished [6]. Hence, the FOD
can be considered a sparse function since the diffusion signal
can be expressed as a linear combination of very few atoms
of our dictionary. As a consequence and also in the light of
the need of q-space subsampling, compressed sensing (CS)
ideas [7, 8] have become popular in the field and sparsity pri-
ors are commonly used to regularise the ill-posed SD inverse
problems.

Most of the state-of-the-art methods to solve SD problems
use `1 minimisation [4, 5] as the common convex relaxation
to promote sparsity on the solution. Yet, as pointed out in
[9], the `1 minimisation is formally inconsistent with the fact
that the volume fractions sum up to unity. A reweighted `1
minimisation scheme [10] was first proposed as an alternative
for FOD recovery in [9]. It approaches `0 minimisation by a
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sequence of convex weighted-`1 problems of the form:

min
x≥0

‖Φx− y‖22 s.t. ‖x‖w,1 ≤ k, (2)

where ‖ · ‖w,1 represents a weighted `1 norm defined as
‖x||w,1 =

∑
iwixi and k acts as a bound on the expected

number of fibre populations in a voxel. The iterative algo-
rithm alternates between estimating the solution and redefin-
ing the weights essentially as the inverse of the values of
the solution at the previous iteration so that, at convergence,
the weighted `1 norm mimics the `0 norm [10]. Solving a
sequence of problems (2), promotes sparsity in the solution
while avoids working directly with the nonconvex `0 norm
and overcomes the `1 inconsistency. However, formulation
(2), as many other standard techniques to perform local re-
construction, focus on a voxel-by-voxel approach and thus,
they are unable to exploit any spatial coherence of the data.

In this paper we review the method presented in [11], that
incorporates structured sparsity ideas to constrain the recon-
struction and simultaneously convey spatial information. In-
deed, the assumption of a smooth evolution of fibre bundles
in the brain can be directly translated into a coherence of the
FOD in neighbouring voxels. In section 2, we show through
numerical simulations how an adequate structured sparsity
prior improves the quality on the solution and allows us to go
to higher undersampling regimes. To conclude we describe
the generic nature of our method, that can be leveraged in any
application field for simultaneous recovery of correlated mul-
tiple sparse signals.

2. STRUCTURE THROUGH REWEIGHTING IN
dMRI

2.1. Algorithm

In this section we consider the simultaneous recovery of mul-
tiple sparse signals x(v), v ∈ {1, . . . , N}, corresponding to
the FOD of N different voxels of the brain. By concatenat-
ing all vectors x(v) column-wise, a matrix X ∈ Rn×N

+ can
be built, whose columns correspond to the individual signals.
Inspired by formulation (2), we propose to resolve the FOD
for all voxels simultaneously through a sequence of problems
of the form:

min
X∈Rn×N

+

‖ΦX− Y‖22 s.t. ‖X‖W,1 ≤ K. (3)

In (3), ‖ · ‖W,1 stands for a weighted-`1 norm of a matrix
defined as:

‖X‖W,1 =
∑
d,v

Wdv|Xdv|, (4)

where the weighting matrix W has the same dimension as X
and each of its entries, indexed with a pair (d, v), acts as a
weight for the corresponding entry of X. The assumption

Fig. 1. Schematic representation of the neighbourhood (in pur-
ple) of element Xdv (in green), i.e. the elements of X involved
in the computation of weight Wdv .

of smooth trajectories of the fibre tracts implies similar ori-
entations of the maximal diffusion direction in neighbouring
voxels. This premise can be directly translated to the FOD,
since each of its coefficients is associated to one of the ker-
nels of our dictionary, i.e. to a discrete direction on the sphere.
As a consequence, there is a correlation in the support of the
nonzero coefficients between the columns of X, leading to a
structure of its sparsity. A joint sparsity model [12,13] would
impose a common signal support, which does not apply in
this context. Imposing low-rankness of X through a nuclear
norm minimisation [14] is not a better model as our signals
could actually have maximally disjoint supports, leading to
a high rank matrix. Our approach consists in meaningfully
designing the weights of a reweighting scheme, not only to
target `0 norm minimisation for each signal but also to im-
pose that the signal associated with neighbour voxels should
have neighbour orientation support.

To translate this idea into a mathematical formulation
we introduce the concept of neighbourhood. For each atom
of the dictionary d associated with a particular direction on
the sphere, we define an angular neighbourhood, N (d),
composed by its closest atoms in terms of angular distance.
Analogously, for each voxel v we define its spatial neigh-
bourhood, N (v), as the group of its 26 closest voxels, com-
monly referred to as the 26-adjacent neighbourhood [15].
We then define the neighbourhood of an element Xdv as the
entries of X at the intersection of rows d and all its neigh-
bour atoms, and columns v and all its neighbour voxels:
N (dv) = {(d′, v′); d′ ∈ (d ∪ N (d)), v′ ∈ (v ∪ N (v))}, as it
is schematically represented in Figure 1.

At each iteration t, every element of the weighting matrix
Wdv is set as the inverse of an average of the absolute val-
ues that X takes in the neighbourhood of Xdv in the previous
iteration:

W
(t+1)
dv =

[
τ (t) +

1

|N (v)|
∑

d′v′∈N (dv)

|X(t)
d′v′ |

]−1
. (5)

As a consequence, all entries corresponding to the neighbour-
hood of an element contribute to its weight. Therefore those
orientations that are “supported” by the surrounding voxels
are reinforced, since they will be given a small weight com-
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pared to isolated ones that are not coherent with their envi-
ronment. Fibre contributions are usually distributed over a
small angular support since the true direction does in general
not coincide exactly to one of the discrete points of the sphere
identifying our orientation dictionary. Therefore, in (5), we
average over voxels, but sum over directions as all values in
neighbour directions are interpreted as corresponding to a sin-
gle true local direction.

In (5), τ represents a stability parameter to avoid infinite
values in the definition of the weights. In the absence of any
spatial constraint, W(0) corresponds to the matrix of all 1s and
thus, the weighted `1 norm is the standard `1,1 norm of a ma-
trix, ‖X‖W,1 = ‖X‖1,1. At convergence, our definitions (4)
and (5) implement a spatially coherent version of the matrix
`0 norm, i.e. the sum of the `0 norms of its columns.

Each weighted-`1 problem of the form (3) is solved using
Douglas-Rachford algorithm [16] in the context of proximal
splitting theory [17]. The reader can find further details on the
algorithm, as well as on the choice of the parameters (K, τ )
in [11]. Hereafter, we refer to the sequence of problems (3)
using the weights defined in (5) as L2L0SS, in reference to
the structured sparsity promoted. In the next subsection, we
compare L2L0SS with L2L0, the voxel-by-voxel scheme (2),
considered as a state-of-the-art SD method for sparse recon-
struction of the FOD.

2.2. Numerical Simulations

In this subsection we compare in detail the performance for
L2L0SS relative to L2L0 for a phantom data set1 (16× 16×
5 volume) that comprises 5 different fibre bundles, resulting
in voxels with different number of fibre populations (1 to 5)
and crossing angles from 15◦ to 90◦. The diffusion signal
is contaminated with Rician noise [18] and the quality of the
reconstructions is reported as a function of two different noise
levels, i.e. SNR = 10, 30 and 5 different acquisition schemes
corresponding to 30, 20, 15, 10 and 6 q-space samples per
voxel.

To evaluate the quality of the reconstructions we focus on
the performance of each method in both correctly assessing
the number of fibre populations in each voxel and the angular
accuracy in their orientation. The success rate (SR∠) corre-
sponds to the proportion of voxels in which a reconstruction
algorithm correctly estimates the number of fibre populations.
The angular accuracy is measured through the mean angular
error θ̄ (in degrees) over all true fibre directions. Note that in-
dex SR∠ represents a mean value over all voxels of interest,
whereas θ̄ is computed voxelwise and we study its statistical
distribution to evaluate the general angular accuracy of each
reconstruction. More details on the formal definition of these
metrics can be found in [19].

1Phantom data set used for the HARDI reconstruction Challenge 2012
http://hardi.epfl.ch/static/events/2012 ISBI

Fig. 2. Comparison of SR∠ and θ̄ between L2L0 and L2L0SS
approaches. Experiments are performed on a phantom dataset
for a fixed SNR = 30 (top row) and SNR = 10 (bottom row).
On the left, SR∠ represents the success rate. On the right, the
boxplot diagrams present the distribution of θ̄, with the edges
of each box representing the 25th and 75th percentiles, the
mean and median value appear as “square” and “circle” value
and the outliers are plotted as red dots.

The performance of both methods as a function of the
number of samples used for the reconstruction is reported in
Figure 2. The plots demonstrate that L2L0SS outperforms
L2L0 for all number of samples, in both noise conditions.
At SNR=30, L2L0SS exhibits an accurate reconstruction
(SR∠ ≥ 85 and mean(θ̄) ≤ 6.5◦), robust to noise for dif-
ferent undersampling regimes, down to 15 samples. The
plots show even a larger difference between the performance
achieved by the two methods when we go to a more noisy
situation (SNR=10). In particular, the overall θ̄ performances
of both methods differ significantly, with an average enhance-
ment of up to 5◦ in the mean θ̄ in different undersampling
regimes.

L2L0 and L2L0SS have also been tested on a real dataset,
corresponding to a whole brain volume, with ≈ 6 · 106 vox-
els and originally 256 q-samples per voxel. To assess the ro-
bustness of both algorithms to different undersampling rates,
the dataset was undersampled and three additional datasets
were created, consisting of only 30, 20 and 10 evenly spaced-
distributed q-samples. The actual SNR was about 30. To eval-
uate the reconstructions from the subsampled real datasets,
the metrics described formerly have been computed consid-
ering the fully-sampled dataset as the golden truth, as it is
suggested in [20]. Results are in agreement with those ob-
tained for numerical simulations on the phantom, confirm-
ing that L2L0SS actually outperforms L2L0. Figure 3 sum-
marises the numerical results for one representative slice of
the brain volume. The ability of correctly assessing the num-
ber fibre populations is illustrated through the number of over-
/underestimated fibre populations per voxel (false positive and
negatives, respectively). All detailed numerical results on real
data can be found in [11].
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Fig. 3. Comparison in real data between L2L0 and L2L0SS
reconstructions with 30, 20 and 10 samples. The quality of
reconstruction is reported as angular accuracy (map of θ̄ per
voxel; top) and ability of correctly assessing the number of
fibres (map of number of false positives and false negatives
per voxel; middle and bottom, respectively).

3. DISCUSSION

So far in this paper we have presented a method to promote
spatial regularisation through a structured sparsity prior and
we have applied it for fibre orientation recovery from diffu-
sion MRI data. We have shown through numerical simula-
tions that this method outperforms a simple sparse regular-
isation on a voxel-by-voxel level when assessing the correct
number of fibres and the angular precision of their orientation.
As shown in section 2 for the problem in dMRI, promoting
spatially structured sparsity guarantees a stronger robustness
to noise and the ability to go to higher undersampling regimes.

Before concluding, we discuss the versatility of L2L0SS
to be applied in a more generic framework for multiple corre-
lated sparse signal recovery. In section 2, spatially-correlated
vectors are concatenated to build matrix X. Formulation (3)
can actually be generalised to recover multiple sparse signals
correlated through a smoothness prior on the variation of the

signal support in the inter-signal dimension. Indeed, consid-
ering the concatenation of nD correlated sparse signals into a
tensor X ∈ Rn1×...×nD and a linear operator Φ that models a
measurement process on them, equation (3) can be rewritten
as:

min
X∈Rn1×...×nD

‖Φ(X )− y‖22 s.t. ‖X‖W,1 ≤ K. (6)

In (6), ‖ · ‖W,1 represents a weighted-`1 norm of a generic
tensor defined as:

‖X‖W,1 =
∑

i1,...,iD

Wi1...iD |Xi1...iD |. (7)

The definition of the weights and neighbourhoods will enable
the embedding of the smoothness prior in the signal support
through the structure on the sparsity and must, of course, be
adapted to the application. Our method stands in contrast
to other joint sparsity models [12, 13] that assume a com-
mon support of the correlated signals. Social sparsity mod-
els [21, 22] also leverage the concept of neighbourhoods to
promote sparsity. However, L2L0SS is essentially inspired
from the reweighting scheme proposed by Candes et al. [10]
to approach `0 minimisation through the convex minimisation
of a weighted `1 norm. Our contribution lies in enforcing a
structured version of the `0 norm of the solution at conver-
gence and thus, the weights should continue to represent the
inverse value of the associated entry at the previous iteration,
to converge to an `0 norm.

In recent work [23] the authors propose an evolution of
the recent Sparsity Averaging Reweighted Analysis approach
(SARA) [24,25] for single signal recovery. In that context, the
reweighting weights can be defined as aggregate values in en-
tire blocks of a sparsifying dictionary, thus promoting struc-
tured sparsity. That reweighting scheme can be understood
in the context of our approach, for neighborhoods defined as
subsets of a sparsifying dictionary.

Future work in the same field of dMRI will consider the
simultaneous recovery of the main directions and microstruc-
ture properties (axon diametre, for instance) of the fibre bun-
dles in each voxel of the brain. That problem can be modelled
as (6), where each of the dimensions of the tensor of interest
would correspond to voxel, orientation and axonal diametre,
respectively.
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