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ABSTRACT

In this paper, we develop Cramèr-Rao Bound (CRB) expres-
sions in multichannel diffusion MRI. We consider a multi-
tensor model with a Non-central Chi (Nc-Chi) distributed
noise. The CRB formulas involve integral expressions that
are numerically evaluated. In a second step, we propose
to simplify the CRB calculation by introducing two analyt-
ical approximate expressions for high SNR and low SNR,
respectively. Moreover, we develop CRB formulas for the pa-
rameters of clinical interest such as the Fractional Anisotropy
(FA) and the principal tensor directions. Finally, we exploit
these CRBs to analyze the impact of controllable system pa-
rameters (e.g. b-value, number of gradient diffusion, number
of acquisition coils, etc.) on the clinical parameter estimation
in view of future optimal design of the acquisition protocol.

Index Terms— Cramèr-Rao Bound, dMRI, Nc-Chi dis-
tribution, multiple coils, multi-tensor model.

1. INTRODUCTION

The diffusion Magnetic Resonance Imaging (dMRI) modal-
ity is a unique non invasive technique used, in-vivo, to probe
the white matter structure of the brain, in order to get access
to the nerve-fiber bundles architecture. The signal attenua-
tion measurements, in each voxel, when a magnetic gradient
diffusion field is applied, reflect the Brownian random mo-
tion of water molecules. Several methods have already been
proposed in the literature to model the observed anisotropic
diffusion of water molecules in the brain’s white matter. The
Diffusion Tensor (DT) model is the most popular one that is
used to successfully reconstruct many white matter bundles.
Quantities derived from the DT model such as Fractional
Anisotropy (FA) and Mean Diffusivity (MD) are widely used
to diagnose neurodegenerative diseases like multiple scle-
roses, Alzheimer, or tumors [1]. This model is, however,
valid only for voxels in which there is a single nerve-fiber
bundle, and therefore cannot be valid for complex fiber bun-
dles configuration such as crossing or kissing. To overcome
this limitation, various techniques have been proposed in the
literature including the Multi-Tensor Model (MTM) proposed
in [2]. This model, and due to its simplicity, seems to be the
best candidate to replace the use of DT model in clinical

routine and fiber tracking (Tractography) since it allows the
computation of DT for each nerve-fiber bundle independently.

In this paper, we examine the performance bounds re-
lated to this model when accounting for the real nature of the
noise (which depends on the image reconstruction technique
from the different acquisition coils). For this, we adopt the
CRB to theoretically determine the optimal estimation preci-
sion of the MTM parameters. Previous works that compute
the CRB for diffusion MRI models, particularly [3–6], the
given FIM expression involve integral formulas that are nu-
merically evaluated, to avoid the integral calculus and to get
more tractable FIM expressions, we introduce two analytical
approximate expressions for high SNR and low SNR, respec-
tively, Moreover, we develop CRB formulas for the parame-
ters of clinical interest such as the Fractional Anisotropy (FA)
and the principal tensor directions. In particular, the CRB
derivation allows us to analyze the dependency of the esti-
mation accuracy on tunable acquisition protocol parameters
(b-value, number of gradient diffusion, number of acquisition
coils, etc.) in view of future optimal design of the system.

2. SIGNAL AND NOISE MODEL

For simplicity, we consider here the bi-tensor1 model. For any
given voxel the signal intensity in the noiseless case is,

Ak,j = S0(fe
−bjgTk,jD1gk,j + (1− f)e−bjgTk,jD2gk,j ), (1)

where bj is the jth diffusion-weighting coefficient known as
b-value, j = 1, · · · , J . J is the number of shell (b-value)
used for the acquisition of dMRI data, and gk,j is a unit vec-
tor representing the kth gradient direction, k = 1, · · · ,Kj

(we assume that Kj gradient directions are associated with
the jth b-value bj according to [7], see Figure 1). f and
(1 − f) are the fractions of occupancy of the fiber bundles.
S0 is the known signal intensity when b = 0. D1 and D2 are
the diffusion tensors symmetric matrices associated with the
two fiber bundles.
With the hardware currently provided by the major vendors
and equipped by multiple acquisition coils, the signal inten-
sity measured in the lth coil when the kth direction of the
diffusion gradient field is applied and for a b-value bj , can

1The extension to a larger number of tensors is straightforward but te-
dious.
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Fig. 1. The encoded diffusion gradient directions as vertices of
a tessellated sphere: On the left, single-shell, j=1, dMRI data
are acquired with one b-value and one set of gradient (e.g.
1000 s.mm−2 × 60 directions). On the right, double shell,
j=2, two b-value associated with two set of gradient directions
(e.g. 1000 s.mm−2 × 30 directions and 1500 s.mm−2 ×
30 directions) [7].

be expressed as Sklj = clAk,j + Nklj(0, σ
2), where cl is

the sensitivity of the lth coil at the voxel under considera-
tion and Nklj(0, σ

2) an additive white Gaussian noise process
with zero-mean and variance σ2. Hence, the intensity of any
voxel in the reconstructed image with a sum-of-squares (SoS)
technique [8], follows the Nc-Chi distribution defined by:

P(Skj , Akj , L, σ) =
A1−L

kj SL
kj

σ2
e
−

S2
kj+A2

kj

2σ2 IL−1(
AkjSkj

σ2
), (2)

where IL−1(.) is the modified (L − 1)th order Bessel func-
tion of the first kind, L is the number of acquisition coils,
Skj is the reconstructed image voxel intensity (i.e. Skj =
(
∑

l S
2
klj)

1/2) and Akj is the total image voxel intensity in
the absence of noise, taking into account the contribution of
all the coils, given by:

Akj = CLS0(fe
−bjgTkjD1gkj + (1− f)e−bjgTkjD2gkj ), (3)

where CL = (
∑L

l=1 c
2
l )

1
2 is the sensitivity factor assumed

known.

3. CRAMER-RAO LOWER BOUND

3.1. Theory

Cramer-Rao lower bounds provide fundamental limits to
the accuracy with which a parameter can be determined
from any experimental data using unbiased estimation meth-
ods. Indeed, for a given statistical model depending on a
parameter vector Θ, the mean square error of any unbi-
ased estimator of Θ is lower bounded by the CRB com-
puted as the inverse of the Fisher Information Matrix (FIM).
The parameters vector in our case is Θ = [dT

1 ,dT
2 , f, σ]

T

(di = [d
(i)
1 , . . . , d

(i)
6 ]T is the six-element vector rearrange-

ment of Di, i=1,2) to be estimated from the observed (noisy)
data vector S = [ST

1 , · · · , ST
J ]

T (where Sj represents the
set of Kj measurements for the b-value bj). The likelihood
function is denoted by L(S,Θ) and the total number of mea-
surements is K = K1 + · · · + KJ . The (i, j)th entry of the

FIM matrix is given by [9]: Fi,j(Θ) = −E[(∂
2 ln(L(S,Θ))

∂θi∂θj
)]

where E[.] stands for the statistical expectation operator. If
ζ̂ represents an unbiased estimator of ζ(Θ) a function of Θ,
then, its error covariance matrix is larger or equal to the CRB,
i.e.:

Cov(ζ) ≥ ▽ζ(Θ)CRB(Θ)(▽ζ(Θ))T , (4)

with CRB(Θ) = F−1(Θ) and ▽ζ(Θ) is the gradient matrix

which (i, j)th entry is
∂ζi
∂θj

.

3.2. Exact CRB

Since the K Diffusion MRI measurements, are statistically
independent, the likelihood function can be written as:

L(S,Θ) =
∏
k,j

P(Skj , Akj , L, σ). (5)

and hence the log-likelihood function is

L(Θ) = lnL(S,Θ) =
∑
k,j

{−2 ln(σ) + (1− L) ln(Akj)

+L ln(Skj)−
A2

kj + S2
kj

2σ2
+ ln IL−1(xkj)} (6)

with xkj =
AkjSkj

σ2 . Using general derivation properties and
recurrence relation of the Bessel function [10], we obtain:

∂L(Θ)
∂θi

= 1
σ2

∑
k,j{(Skj

IL(xkj)
IL−1(xkj)

−Akj)
∂Akj

∂θi
}, θi ̸= σ

∂L(Θ)
∂θi

=
∑

k,j{
S2
kj+A2

kj

σ3 − 2SkjAkj

σ3

IL(xkj)
IL−1(xkj)

− 2L
σ }, θi = σ

After some tedious but straightforward derivations, we get
the elements of the FIM:

Fm,n =
∑
k,j

[
1

σ2

∂Akj

∂θm

∂Akj

∂θn
Mkj ], 1 ≤ m,n ≤ 13. (7)

Fm,14 = − 2

σ2

∑
k,j

[ηkj
∂Akj

∂θm
(Mkj − 1)], 1 ≤ m ≤ 13 (8)

F14,14 =
∑
k,j

4

σ2
[L− η2

kj(Mkj − 1)], (θm = θn = σ) (9)

with:

Mkj = E[
x2
kj

η2kj

I2L(xkj)

I2L−1(xkj)
]− η2kj , (10)

ηkj =
Akj

σ . Using (2), Mkj is computed as:

Mkj = η
−2(L+1)
kj e−

η2
kj
2

∫ +∞
0

xL+2e
− x2

2η2
kj

I2
L(x)

IL−1(x)
dx− η2kj

(11)
Unfortunately, the integral in (11) does not admit a closed

form expression, hence it is evaluated numerically. Using
MATLAB, the Bessel function IL(x) is available under the
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command besseli(L, x). However direct usage of this func-
tion will be prone to numerical errors, due to the large dy-
namical range of Bessel function values. Fortunately, there
is a scaled version of Bessel function in MATLAB under the
command besseli(L, x, 1) equal to ǏL(x) = IL(x)e

−x which
solves this numerical problem according to:

Mkj = η
−2(L+1)
kj e−

η2
kj
2

∫ +∞
0

xL+2e
x− x2

2η2
kj

Ǐ2
L(x)

ǏL−1(x)
dx−η2kj .

(12)
In matrix form, the FIM can be written as: F =

∑J
j=1 Fj ,

where Fj is a symmetric matrix with an upper triangular part
given by:GjΛ1jG

T
j GjΛ3jG

T
j GjΛ4jηj

2
σGjΛ5jηj

GjΛ2jG
T
j GjΛ6jηj

2
σGjΛ7jηj

ηT
j Λjηj

2
σηT

j (I − Λj)ηj
4
σ2 (KjL − ηT

j (I − Λj)ηj)


The 6 × Kj matrix Gj built from the gradient directions
associated to bj is given by Gj = bj [g̃1j , · · · , g̃Kjj ] where
g̃ satisfies gTD1g = g̃Td1, i.e. if g = [gx, gy, gz]

T then
g̃ = [g2x, g

2
y, g

2
z , 2gxgy, 2gxgz, 2gygz]

T . ηj is the SNR vector,
whose elements are ηkj , k = 1, · · · ,Kj . Λj ,Λ1j , · · · ,Λ7j

are Kj ×Kj diagonal matrices, given by:

Λ1j = Λjdiag(η
1
j . ∗ η1

j ), Λ2j = Λjdiag(η
2
j . ∗ η2

j )

Λ3j = Λjdiag(η
1. ∗ η2), Λ4j = diag(η1

j )Λj

Λ5j = diag(η1
j )(I−Λj), Λ6j = diag(η2

j )Λj

Λ7j = diag(η2
j )(I−Λj), Λj = diag(M1j , · · · ,MKjj)

where .∗ denotes the element-wise product, I the identity
matrix and η1

j (resp. η2
j ) is the Kj dimensional vector which

entries are fS0

σ e−bjgTkjD1gkj (resp. (1−f)S0

σ e−bjgTkjD2gkj ).
As we can see, the FIM elements depend on the SNRs, b-
values, number of acquisition coils and the gradient direction
field. In the sequel, we will study the effect of these parame-
ters on the CRB and hence on the estimation of the bi-tensor
model and its derived quantities.

3.3. Approximate analytical CRB

To avoid the previous integral calculus and to get more
tractable FIM expressions, we introduce here some approx-
imations of the fraction I2

L(x)

I2
L−1(x)

which lead to simple and
interpretable formulas. These approximations are based on
asymptotic Bessel function expansions considered for the
high and low SNR cases.

High SNR case: We assume here that ηkj is high for all k, j,
and use the approximation of the modified Bessel function of
the first kind given in [10], for large x values:

IL(x) ∼
ex√
2πx

{1− 4L2 − 1

8x
+

(4L2 − 1)(4L2 − 9)

2!(8x)2
+ ...},

which allows us to calculate an asymptotic expansion of
I2
L(x)

I2
L−1(x)

as:

I2L(x)

I2L−1(x)
= 1− 2L− 1

x
+

(2L− 1)(L− 1)

x2
+O(

1

x3
), (13)

Plugging (13) in (10) and using the first and second order mo-
ments of the Nc-Chi distribution leads to:

Mkj ≈ 2L+ (2L−1)(L−1)
η2
kj

− 2L−1
ηkj

√
π
2L

L−1
1
2

(−η2
kj

2 ), (14)

where LL−1
1
2

is the generalized Laguerre polynomial.

Low SNR case: in that case we use the following approxima-
tion in the vicinity of zero [10]:

IL(x) ∼
( 12x)

L

Γ(L+ 1)
, (15)

which allows to approximate the fraction I2
L(x)

I2
L−1(x)

as:

I2L(x)

I2L−1(x)
≈ 1

4L2
x2 (16)

Plugging (16) in (10) and using the forth order moments of
the Nc-Chi distribution we obtain finally:

Mkj =
η2kj
4L2

[3η2kj + (η2kj + 1)(η2kj + 4L)]. (17)

In Figure 2, we plot the exact CRB and our approximate an-
alytical CRB for both high and low SNR cases. The ordinate
show the optimal estimation error (square root of the CRB)
of the largest eigenvalue of a typical tensor as a function of
the number of gradient directions. Since the SNR cannot be
set by the user, for simulation, the largest (resp. the lowest)
attenuated diffusion signal direction was chosen to keep the
SNR in the high SNR (resp. low SNR) range. Our simulation
results show that these analytical formulas provide very good
approximations of the FIM and hence the CRB expressions.

3.4. CRB of clinical interest parameters

The Diffusion Tensors D1 and D2 are 3 × 3 symmet-
ric and positive-definite matrices that describe the water
molecule diffusion process through their spectral elements,
i.e. their eigenvalues and eigenvectors denoted λi

1, λ
i
2, λ

i
3 and

Vi = [vi
1,v

i
2,v

i
3], i = 1, 2 respectively. In clinical applica-

tion, the FA is the index used to measure the anisotropy of the
brain tissues. It is calculated as :

FAi =

√
(λi

1 − λi
2)

2 + (λi
1 − λi

3)
2 + (λi

2 − λi
3)

2

2((λi
1)

2 + (λi
2)

2 + (λi
3)

2)
(18)
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Fig. 2. Comparison between Exact CRB and our approximate
analytical CRB.

Using (4), the estimation of this clinical parameter is lower
bounded (in terms of mean squares error) by:

CRB(FAi) = ▽(FAi)CRB(λi)▽(FAi)T , (19)

where ▽(FAi) is the gradient vector given by [∂FAi

∂λi
1
, ∂FAi

∂λi
2
,

∂FAi

∂λi
3
], and CRB(λi) is the CRB for the eigenvalues of the

ith tensor given by:

CRB(λi) = ▽(λ)CRB(Di)▽(λ)T (20)

where CRB(Di) denotes the CRB for the ith tensor param-
eters given by the ith 6 × 6 diagonal bloc of the CRB matrix
computed previously. ▽(λ) denotes the 3× 6 gradient matrix
given by [11]:

▽(λ) = (Vi ⊙Vi)TJ (21)

⊙ being the Khatri-Rao product and J is a selection matrix
defined by vec(Di) = Jdi.
Due to lack of space in the paper, the CRBs of the principal
tensor directions (used in the tractography) will be presented
and thoroughly analyzed in an extended version of this work.

4. PERFORMANCE BOUNDS ANALYSIS

In this section we exploit the developed CRBs to analyze the
impact of controllable system parameters (e.g. b-value, num-
ber of gradient diffusion, and number of acquisition coils) on
the estimation of the bi-tensor parameters. We present here
the optimal standard deviation (Std) computed as the square
root of the CRB for the largest eigenvalue λ1

1 and Frac-
tional Anisotropy FA1 of the first tensor (similar results have
been observed for tensor 2). We simulate fiber crossing by
generating diffusion MRI data with representative diffusion
values, selected from a very anisotropic voxel of the human
white matter, from the body of the corpus callosum [12].
[λ1

1, λ
1
2, λ

1
3] = [1708, 303, 114]× 10−6mm2.s−1,

[λ2
1, λ

2
2, λ

2
3] = [1685, 287, 109]× 10−6mm2.s−1.

We have used 500 diffusion encoding gradient directions dis-
tributed on the unit sphere according to [7]. In the case of the
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Fig. 3. Influence of the number of gradient directions on λ1
1.

single-shell, there is insufficient data to resolve the degrees
of freedom of both volume fractions and tensors respectively.
So instead of using the model in (1) we use direct sum of the
two exponentials because the volume fractions f and (1− f)
can be integrated into the diffusion tensors D1 and D2 re-
spectively.
fe−bgT Ď1g = e−bgT (Ď1− ln(f)

b I)g = e−bgTD1g.
We considered b = 1000 s.mm−2 for the single-shell case
and b1 = 1000 s.mm−2, b2 = 1500 s.mm−2 for the multi-
shell case.

4.1. Effect of the number of diffusion gradient directions

In Figure 3, we show the minimum estimation error of the
largest eigenvalue λ1

1 as a function of the number of gradi-
ents, assuming L = 1. It can be seen that better accuracy
in the estimation of the largest eigenvalue can be obtained by
including more diffusion gradient directions. One can see,
however, that with about 100 to 200 gradient directions one
is very close to the performance obtained with 500 directions.
Indeed, we observes a large gain when varying the number
of gradients in the range [14 − 100] after which the gain be-
comes less and less significant. Finally, for high SNR case,
we can notice that using two b-values improves significantly
the estimation accuracy. For example, from Figure 3-b, we
can see that working with two b-values and about 100 gradi-
ent directions is as good as working with a single b value and
500 gradient directions (the latter being much more costly in
terms of acquisition time).

4.2. Effect of the number of coils

For multi-channel systems, the image reconstruction tech-
nique combines information from different acquisition coils.
To examine the effect of increasing the number of coils in the
estimation of the bi-tensor model parameters, we have fixed
the number of diffusion gradient directions to 60. In Figure 4,
we show the estimation error of the largest eigenvalue λ1

1 as a
function of the number of acquisition coils for low and high
SNR cases. We note that continue to increasing the number
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Fig. 5. Influence of the number of gradient directions, b value
and the number of acquisition coils on the FA.

of coils does not improve significantly the accuracy because
the CRB will decrease

√
L times with respect to a single-coil

system. Working with two b values, improves significantly
the performance accuracy.

4.3. Impact of multiple-coil systems and the diffusion
gradient directions on FA

In Figure 5, we show simulated results that illustrate the es-
timate error of FA1 as a function of the number of gradient
directions, in the case of single b value and two b values, for
different number of acquisition coils. The obtained results
confirm our previous results discussed in sections 4.1 and 4.2.
The estimation gain is obvious when considering two shells
(Figure 5-b).

5. CONCLUSION

In this paper, we have developed Cramèr-Rao Bound (CRB)
expressions in multichannel diffusion MRI. We have consid-
ered a multi-tensor model with a non-central Chi distributed
noise. These CRBs represent a powerful theoretical tool to
analyze the performance of such system and to optimize the
tuning of its parameters. Due to space limitation, we have
restricted our study to the impact of the number of diffusion

gradient directions, the number of acquisition coils, the SNR
and the b value on the estimation of the largest eigenvalue and
the FA of the first tensor. These preliminary results show that
to reduce the scan time while preserving a good estimation
accuracy, it is preferable to increase the number of acquisi-
tion coils rather than the number of gradient directions and to
prefer working with multiple shells.
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