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ABSTRACT
Singing voice detection aims at identifying the regions in a
music recording where at least one person sings. This is a
challenging problem that cannot be solved without analysing
the temporal evolution of the signal. Current state-of-the-art
methods combine timbral with temporal characteristics, by
summarising various feature values over time, e.g. by com-
puting their variance. This leads to more contextual informa-
tion, but also to increased latency, which is problematic if our
goal is on-line, real-time singing voice detection.

To overcome this problem and reduce the necessity to
include context in the features themselves, we introduce a
method that uses Long Short-Term Memory Recurrent Neural
Networks (LSTM-RNN). In experiments on several data sets,
the resulting singing voice detector outperforms the state-of-
the-art baselines in terms of accuracy, while at the same time
drastically reducing latency and increasing the time resolution
of the detector.

Index Terms— singing voice detection, music informa-
tion retrieval, recurrent neural nets

1. INTRODUCTION

At a first glance, the problem of singing voice detection
(SVD) in polyphonic music recordings seems to be analogous
to voice activity detection (VAD). However, there are several
reasons why they are quite different. Often, VAD algorithms
utilise features relating to energy, zero crossing rate, or peri-
odicity, but the influence of musical accompaniment renders
those features less useful. In [1] it was shown that music is
the most challenging disturbance for several state-of-the-art
VAD algorithms. On the other hand, in [2] it was shown that
the presence of singing voice did not produce a high false pos-
itive rate for their VAD system, which indicates that a VAD
system is not necessarily suited for SVD.

In the field of Music Information Retrieval (MIR), SVD
has attracted increasing attention lately, usually as a prepro-
cessing step to improve, e.g. Artist Recognition or Singing
Voice Separation. Often, audio frames of approx. 200 ms
length are used, mainly for two reasons: 1) annotating a finer
grained ground truth is a tedious task for humans; and 2)

sometimes a relatively long observation window is necessary
in order to yield an appropriate frequency resolution in the
spectrum for further computations. Therefore, SVD becomes
more challenging with decreasing frame lengths. A higher
resolution could open up new possibilities, and be useful for
tasks like keyword spotting in music, automatic karaoke text
alignment, and various other real-time synchronisation tasks.

In order to achieve a higher resolution in time, we take the
method from Lehner et al. [3] as a starting point. By moving
some complexity from the feature extraction to the classifi-
cation stage, we manage to increase resolution by a factor of
10, to 50 predictions per second. The time that needs to pass
before the features can be fed to a classifier, which one might
call latency-by-design, is reduced from 1500 ms to 140 ms
(see Section 3.1.1 below), compared to this baseline.

2. RELATED WORK

Our starting point and baseline is the method by Lehner et
al. [3], which gave promising results on several publicly avail-
able corpora. It is designed to be light-weight, and suited to
be combined with standard classifiers like Random Forests. In
order to allow such classifiers to also consider temporal char-
acteristics of the signal, feature values are summarised over
time, by calculating sums or variances over several frames.
The units of audio to be classified are 200 ms frames, result-
ing in five classifications per second. The latency-by-design,
caused mainly by the Vocal Variance (VV) feature [3], is
rather high. The VV is simply the variance of the first five
MFCCs, calculated over 11 consecutive values around the
current frame. Therefore, for the computation of the VV for
the current frame, six MFCCs need to be available in the for-
ward direction.

Fig. 1. Latency in the method by Lehner et al. [3].
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MFCCs are computed over a rather long observation win-
dow of 800 ms, placed symmetrically around the current clas-
sification frame (see Fig. 1).This windowing scheme results
in a latency-by-design of 1500 ms (1200 ms for six frames,
and the additional 300 ms in the forward direction). To al-
leviate this problem, we will move some complexity from
the feature extraction to the classification stage by using a
context-aware classifier, as described in Section 3.

All in all, the feature vector used in [3] comprises 116 at-
tributes, computed every 200 ms: 17 Fluctogram variance fea-
tures, 17 Spectral Flatness means and 17 Spectral Contraction
variances, 60 MFCC features (30 MFCCs plus corresponding
deltas), and 5 Vocal Variance features. For postprocessing,
simple median filters are used to first smooth the continuous
output of the classifier (order=4), and then to realise major-
ity voting (order=5). A detailed overview and comparison to
other methods is given in [3], and would be beyond the scope
of this paper.

Another state-of-the-art baseline that we re-implemented
for comparison is the method by Weninger et al. [4]. As fea-
tures, they extract a 46 attribute vector with the open-source
toolkit openSMILE [5]: 13 MFCCs along with their first and
second order derivatives (delta and double delta), short-time
energy, zero- and mean-crossing rate, voicing probability, F-
zero, harmonics-to-noise ratio (HNR), and predominant pitch.

In our implementation of this reference method, we do
not extract the features in a beat-wise manner, but with a
fixed observation window of 40 ms and 50% overlap, which
gives the same time resolution as in our method to be de-
scribed in this paper. To focus on the performance of their
features, we also skip the combined NMF-based source sepa-
ration. This is justified because the benefit regarding singing
voice detection – according to their results – is rather small,
with an increase of approx. 1 percentage point (ppt) in accu-
racy. For other tasks like gender recognition, their prepro-
cessing appears more helpful, with approx. 3-4 ppt better ac-
curacy reported. As classifier, Weninger et al. [4] use Bidirec-
tional Long Short-Term Memory Recurrent Neural Networks
(BLSTM-RNNs), which have access to the complete past and
future context. Therefore, their method is not online-capable.

3. METHOD

Recurrent neural networks (RNNs) are used for a wide range
of tasks beyond simple frame classification. Especially if
used with Long Short Term Memory (LSTM) [6] units in
a bidirectional topology, they have exhibited state-of-the-art
performance in a lot of tasks where the temporal context of
a signal is important to classify individual frames, e.g. in
phoneme classification [7] or beat tracking [8]. Temporal con-
text is sometimes also necessary for humans to make a vocal-
nonvocal decision 1, therefore using LSTM-RNNs seems to

1examples at http://www.cp.jku.at/misc/eusipco2015/

be an appropriate choice for SVD. Furthermore, they are ca-
pable of learning the amount of context needed for classifying
the current frame, which is an advantage over fixed-size con-
text approaches with e.g. graphical models.

In our method we use a uni-directional RNN with one hid-
den layer and 55 LSTM units to classify frames into vocal and
non-vocal. The hidden units are not only connected to the in-
put units (or in the case of consecutive hidden layers, to the
units of the preceding hidden layer), but each unit also has
a connection to itself, i.e. the previous time step. Through
these recurrent connections the RNN has access to past infor-
mation, which enables it to model temporal context.

Compared to standard tanh units as generally used in
NNs, LSTM units have a unique memory cell that enables
them to store information for an arbitrary time span. Read,
write and delete operations on this memory cell are handled
through gates, which act similarly to normal units. RNNs
equipped with LSTM units do not suffer from the vanishing
gradient problem and expand the temporal context handled
by RNNs from a few time steps to as much as hundreds of
steps. By exploiting the ability of LSTM-RNNs to model a
wide temporal context, we will be able to solve one of the
major drawbacks of [3] – the latency-by-design of 1500 ms –
by removing the need to compute long-term functionals like
mean or variance of features, and by computing the basic un-
derlying MFCC features from shorter audio frames of 100 ms
length.

Since we use a uni-directional topology, our method is
online capable, i.e. it can classify a signal almost instanta-
neously. The maximum latency introduced by our method is
140 ms (see Fig. 2).

3.1. Feature Set

Before the feature extraction, the songs are unified, i.e. down-
sampled to 22 kHz and converted to mono. No amplitude
normalisation is done, since this would destroy the online-
capability. The units of audio for classification are frames
of 20 ms, resulting in 50 classifications per second of audio.
The actual window over which all features are calculated is
100 ms, and is always placed symmetrically around the cur-
rent frame. Therefore, we need an additional 40 ms in both
directions of the current frame.

3.1.1. MFCCs and deltas

We use the VOICEBOX toolbox [9] to extract 30-dimensional
MFCCs including the 0th coefficient. Their first order deriva-
tives (deltas) are also computed, which results in a 60-
dimensional feature vector. In VOICEBOX [9], the deltas are
computed as the slope of 9 consecutive coefficients, placed
symmetrically around the current frame. Therefore, five
MFCCs (current frame+four frames afterwards) need to be
available before the deltas for the current frame can be com-
puted.
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Fig. 2. Latency in our new method.

According to the windowing scheme explained in 3.1
above, this results in a latency-by-design of 140 ms (100 ms
for five frames, and the additional 40 ms in the forward direc-
tion).

In order to distinguish highly harmonic instruments from
singing voice, [3] suggest an additional set of temporal char-
acteristic descriptors of the signal, which is explained in the
next section.

3.1.2. Fluctogram

To detect sub-semitone fluctuations of partials without the ne-
cessity of pitch estimation, in [3] the Fluctogram was intro-
duced. The basic idea behind this feature is to use the cross
correlation to compare each band-divided spectrum of a time
frame Xt to the subsequent one Xt+1, and the index of the
maximum correlation when Xt+1 is shifted ±n bins, is cal-
culated. This way, only sub-semitone, pitch-continuous fluc-
tuations are targeted and detected, as can be seen in Fig. 3.

Fig. 3. A Spectrogram and the corresponding Fluctogram.

In [3], each frame of audio is characterised by calculat-
ing the variance over a window of 40 successive Fluctogram
values, centered on the current frame, separately for each
band. For the LSTM-RNN, we consider it sufficient to just
use the plain Fluctogram values, which results in 17 values
per audio frame. This is also true for the reliability indicators
(see below) that we use along with the Fluctogram, where we
only use the interim values, instead of summarising them with
means or variances.

3.1.3. Spectral Flatness and Spectral Contraction

The Fluctogram is error-prone under certain circumstances,
therefore additional information that relates to the reliabil-

ity of its values in the individual bands is necessary. The
Fluctogram is most reliable when the signal is not noise-like,
which is characterised for each frequency band by the Spec-
tral Flatness (SF) measure [10], yielding another 17 feature
values.

The trajectory of the partial that dominates the result of
the cross-correlation, can sometimes cross the frequency band
boundary. To account for that, the Spectral Contraction (SC)
[3] relates the energy of the spectrum in the center to the total
amount of energy. It is also computed for each frequency
band, yielding another 17 feature values. Conveniently, the
results of both reliability indicators are in the range [0 : 1],
and input level invariant.

3.1.4. Final Featureset and Normalisation

As input for the LSTM-RNNs we use 30 MFCCs and their
first derivatives (delta coefficients), 17 Fluctogram shift in-
dices, 17 Spectral Contraction, and 17 Spectral Flatness val-
ues. All of the resulting 111 attributes can be calculated from
the same spectrogram with an observation window of 100 ms,
centered around a 20 ms frame. According to Graves [11], it
is recommended to apply normalisation (mean=0, std=1) to
the features. This is done by solely using the training set to
compute mean and standard deviation. The test set is always
left unseen, and normalised according to the training set.

3.2. LSTM-RNN Training and Testing

The LSTM-RNNs have one input layer matching the size of
the feature vector (111), one hidden layer with 55 LSTM
units, and one output layer with two units. The weights are
randomly initialised from a zero-mean Gaussian distribution
(σ=0.05). A similar distribution (σ=0.3) is used to add noise
to the input activations for improved generalisation.

Each song from the training set is presented in cor-
rect order on a frame-by-frame basis, and the weights
are updated with a steepest descent optimiser (rate=10−5,
momentum=0.9). Furthermore, we apply the following strat-
egy to improve the generalisation of the proposed method:
We randomly split the training set into 80%-20% subsets, and
use these as training and validation sets, where the validation
part of the data is used for early stopping after no improve-
ment over 20 epochs. We repeat thisN times. This will result
in several models, trained with different input, which are then
combined by averaging their continuous outputs. In order to
get meaningful results for comparison, we do this also for the
baseline method of Weninger et al. [4].

4. RESULTS

In this section, we present the results on three different cor-
pora, two of which are publicly available. We train, according
to our previously determined strategy, several LSTM-RNNs
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and compare the results to the previously introduced meth-
ods in section 2. The topology of the networks and all ad-
ditional parameters remain unchanged throughout all experi-
ments, hence solely the training and test data is different.

4.1. In-House data set

To find an optimal setting of classifier parameters, we first
perform a set of experiments with an in-house data set of 149
annotated songs by 149 different artists. Although all songs
are from the same genre (rock), we consider this data set suit-
able for parametrising the classifier: the songs contain a lot of
guitar soli, which have characteristics similar to vocals. We
expect any classifier that achieves a low false positive rate for
singing voice on this set, to also have a low false positive rate
in general. Approximately 52% of the frames are annotated
as vocal, and the amount of pure singing, i.e. without instru-
mental accompaniment, is negligible.

This data set is split into a 75 song training set, and a 74
song test set, approx. 5 h each. Only the 75 song train set
was used to optimise parameters, and the test set is always
left unseen. For this, the train set is further split 5-fold into
60 train- and 15 validation songs, respectively. Therefore, 5
LSTM-RNNs are trained. The previously unseen 74 song test
set is normalised according to the train set, and the outputs of
all models are averaged.

To assess the impact of adaptive context learning, we ad-
ditionally train a second set of RNNs, which use tanh units in-
stead of lstm units. We changed the hidden layer to comprise
142 tanh units in order to have the same amount of weights.
The learning rate was reduced to 10−6 in order to obtain net-
work convergence. The remaining parameters (incl. the train-
and test setup) of the RNNs are equal to those of the LSTM-
RNNs. The results on the 74 song test set are presented in
Table 1.

Clearly, the LSTM-RNN with adaptive context learning
(column NEW) outperforms the RNN with tanh units (col.
RNNtanh), with a difference in accuracy of almost 6 ppt
(89.1% vs. 83.2%). Compared to the method of Lehner et al.
[3] (col. LEH), the accuracy increased considerably by more
than 5 ppt, at the same time giving an increased time resolu-
tion, decreased latency and size of feature vector, and with-
out any postprocessing involved. Compared to the method of
Weninger et al. [4], the accuracy is only slightly better (89.1%
vs. 87.8%). Considering the advantage of the bi-directional
BLSTM-RNNs (access to complete future context) over our
LSTM-RNN (online-capable), it appears that the set of fea-
tures utilised in our method is more adequate. On the other
hand, the feature vector of Weninger et al. [4] is much smaller
(46 vs. 111 attributes).

4.2. Experiments on Common Benchmark data sets

In these experiments we use two publicly available corpora
along with singing voice annotations: Jamendo Corpus: 93

LEH WEN RNNtanh NEW
acc [%] 83.62 87.81 83.20 89.06
recall .848 .884 .873 .905
precision .818 .881 .816 .887
f-measure .833 .883 .843 .895

Table 1. Results on internal data set. LEH: the method from
Lehner et al. [3]. WEN: the method from Weninger et al. [4].
RNNtanh: proposed method w/o adaptive context learning.
NEW: the proposed method with adaptive context learning.
Recall, precision, and f-measure relate to our class of interest,
vocals.

LEH WEN NEW
acc [%] 88.17 86.20 89.42
recall .862 .875 .906
precision .880 .869 .898
f-measure .871 .872 .902

Table 2. Results on Jamendo Corpus.

copyright-free songs from the Jamendo music sharing web-
site [12], collected and annotated by Ramona et al. [13].
RWC Music Database: Popular Music (RWC-MDB-P-
2001): 100 songs released by Goto et al. [14], with anno-
tations provided by Mauch et al. [15].

4.2.1. Jamendo Corpus

For this data set, the authors [13] suggest a specific split, with
61 training, 16 validation, and 16 test songs. We present the
results on the Jamendo Corpus in Table 2. Similar to the re-
sults on the internal data set, our method gives promising re-
sults. Compared to the method of Weninger et al. [4], the ac-
curacy is approx. 3 ppt higher (89.4% vs. 86.2%). Compared
to the results of Lehner et al. [3], the accuracy is approx. 1 ppt
higher.

4.2.2. RWC Music Database

For this data set, in [15, 16], and [3], a 5-fold cross validation
is utilised. In order to allow for a fair comparison, we used the
exact same split as in [3]. To make sure that no future context
was used, we treated every data split as a separate data set and
normalised always only according to the songs that were used
for training. Thus, we ended up with five different represen-
tations of the same songs that only differ in the normalisation
scheme. We present the results on the RWC Music Database
in Table 3. Compared to the method of Weninger et al. [4],
the accuracy is approx. 2 ppt higher (92.3% vs. 90.0%). Com-
pared to the results of Lehner et al. [3], the accuracy is almost
5 ppt higher (92.3% vs. 87.5%), and the biggest improvement
appears to be regarding the precision.
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LEH WEN NEW
acc [%] 87.51 90.02 92.29
recall .926 .915 .934
precision .875 .919 .938
f-measure .900 .917 .936

Table 3. Results on RWC Music Database.

5. CONCLUSION

We suggest a method for singing voice detection that uses
very light-weight features, along with LSTM-RNN. Due to
the reduced latency-by-design of 140 ms, as well as the in-
creased time resolution of one prediction every 20 ms, new
possibilities open up, especially for real-time scenarios.

Consistently, our method outperformed two state-of-the-
art baselines on three different data sets, two of which are
publicly available. No adaptation of parameters was done af-
ter determining a suitable strategy with just the internal data
set. The baseline from Lehner et al. [3] has the disadvan-
tage of a latency-by-design of 1500 ms, and the baseline of
Weninger et al. [4] is an offline method due to the need for
BLSTM-RNNs to access future context.
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