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ABSTRACT

Keyword spotting in speech is a very well-researched prob-
lem, but there are almost no approaches for singing. Most
speech-based approaches cannot be applied easily to singing
because the phoneme durations in singing vary a lot more
than in speech, especially the vowel durations.

To represent expected phoneme durations, several duration
modeling techniques have been developed over the years in
the field of ASR. To the best of our knowledge, these ap-
proaches have not been used for keyword spotting yet.

In this paper, we present a new approach for keyword spotting
in singing. We first extract various features (MFCC, TRAP,
PLP, RASTA-PLP) and generate phoneme posteriograms
from these features. We then perform keyword spotting on
these posteriograms using keyword-filler HMMs and test
two different duration modeling techniques on these HMMs:
Explicit-duration modeling and Post-processor duration mod-
eling. We evaluate our approach on a small singing data set
without accompaniment.

Index Terms— Keyword spotting, Spoken term de-
tection, Singing, Explicit-Duration HMM, Keyword-Filler
HMM

1. INTRODUCTION

Ever since the widespread introduction of digital formats
for music, professional and personal music collections have
grown exponentially. In the past 15 years, many interesting
technologies have been developed to make it easier for users
to efficiently search these collections by certain semantic
criteria, such as tempo, mood, genre, instruments, etc. [1].
However, the automatic detection of certain keywords is not
yet a part of these semantic systems.

Keyword spotting (or spoken term detection) has been a re-
search topic in the field of Automatic Speech Recognition
(ASR) since the 1970’s [2] and has seen a lot of development
ever since [3]. For singing, however, almost no approaches
exist. Keyword spotting in singing has a multitude of possi-
ble applications, allowing users to search their collections for
songs with lyrics about certain topics. Professional users, for
example, could use this technology in the context of synch
licensing [4] (e.g., “I need a song containing the word ‘free-
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dom’ for a car commercial”). Private users, on the other
hand, could use it for automatic playlist generation (“Gener-
ate a playlist with songs that contain the word ‘Christmas’”.)
Additionally, the results obtained from keyword spotting
could be used to improve other classification systems, e.g. for
mood detection or genre recognition.

In this paper, we present an improved approach to keyword
spotting in unaccompanied singing which employs keyword-
filler Hidden Markov Models (HMMs) and additionally im-
poses phoneme duration restrictions. We first survey the
current state of the art in section 2 and present our data set
in section 3. In section 4, we detail our new approach and
present our experiments and results in section 5. We then
give a conclusion in section 6, and finally make suggestions
for future work in section 7.

2. STATE OF THE ART

To our knowledge, no full keyword spotting (KWS) systems
for singing have so far been published, except our own pre-
vious approach [5]. Preliminary work has been presented
in [6] and [7]. In [6], an approach based on sub-sequence
Dynamic Time Warping (DTW) was suggested. Example ut-
terances are used to find similar sequences in the test data by
their acoustic characteristics. In [7], a phoneme recognition
system for singing using Multilayer Perceptrons (MLPs) is
presented. These MLPs can serve as an acoustic model to
generate phonetic input for a keyword spotting system. In [8]
and [9], similar principles are applied to lyrics alignment and
Query by Humming.

State-of-the-art algorithms for KWS in speech cannot easily
be applied to singing. The reason for this is shown in figure 1:
The phoneme durations vary a lot more in singing, especially
those of the vowels. For this reason, we decided to focus on
a more basic acoustic approach in [5]. The tested approach
employs keyword-filler HMMs which detect the keyword.
The recognition is performed on phoneme posteriograms. We
obtained F; measures of 33% for spoken lyrics and 24% for
unaccompanied singing. Using post-processing techniques
on the posteriograms, the singing result was improved up to
27%.

In our new approach, we seek to exploit the knowledge
about possible phoneme durations. We therefore introduce
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Fig. 1: Average standard deviations for vowels and consonants
in the TIMIT speech data set [10] (blue) and our unaccompa-
nied singing data set (green).

two phoneme duration modeling techniques to the keyword-
filler HMM algorithm: Explicit-duration modeling and Post-
processor duration modeling.

3. DATA SET

Our data set has been previously presented in [7] and [5]. It
consists of the vocal tracks of 19 commercial pop songs in
studio quality. We use unaccompanied singing to avoid a pos-
sible source of interference. We split these 19 songs into 915
clips, each of which roughly represents a line of the songs’
lyrics. Additionally, we recorded spoken versions of the same
lyrics by a single speaker. In this paper, however, we only fo-
cus on the results for singing.

We selected 51 keywords in order to evaluate our keyword
spotting system. Most of them occur frequently in the data
set, but some were selected because they contain a larger
number of phonemes. An overview can be found in [5]. All
audio clips were annotated with full words (including the key-
words). Twelve of the songs (sung version) were additionally
annotated with time-aligned phonemes.

4. PROPOSED SYSTEM

Figure 2 shows an overview over our keyword spotting sys-
tem.

4.1. Feature extraction

On each audio sample, we extract MFCCs, TRAPs [11],
PLPs, and RASTA-PLPs [12], each with a resolution of 10ms
and a window of 25ms. We retain 20 coefficients for the
MEFCCs and 13 coefficients plus deltas and double-deltas for
the PLPs and RASTA-PLPs. For the TRAPs, we use 8 lin-
early spaced bands and keep 8 DCT coefficients for each of
them.

4.2. Phoneme recognition

Using each feature data set, we trained MLPs that act as
acoustic models. The MLPs were configured to have two
hidden layers with 1000 nodes each. They were trained on
the popular TIMIT speech database [10], some noise data,
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and a small portion of the singing data. The resulting MLPs
are used to recognize phonemes in our singing data set, gen-
erating phoneme posteriograms.

4.3. Keyword search

Our system then performs a keyword search for a specific key-
word on the resulting phoneme posteriograms. We employ
keyword-filler HMMs for this purpose and enhance them with
duration modeling. To our knowledge, these two principles
have not been combined before.

4.3.1. Keyword-filler HMMs

Keyword-filler HMMs have been described before in [13]
and [14]. We also tested them for keyword spotting in singing
in [5].

Keyword-filler HMMs consist of two sub-HMMs: One to
model the keyword and one to model everything else (=filler).
The keyword HMM has a simple left-to-right topology with
one state per keyword phoneme. The filler HMM is a fully
connected loop of all phonemes. When the Viterbi path with
the highest likelihood passes through the keyword HMM
rather than the filler loop, the keyword is detected.

4.3.2. Duration modeling

As shown in figure 1, each phoneme in the TIMIT speech
database has a fairly fixed duration. In singing, the vowels’
durations vary a lot, but the consonants’ are still quite pre-
dictable. Standard HMMs do not impose any restrictions on
the state durations, resulting in a geometric distribution which
does not correspond to naturally observed phoneme durations.
As first shown in [15], introducing restrictions on state dura-
tions can improve the recognition results. In [16], Juang et
al. present two basic approaches for duration modeling in
HMMs: Internal duration modeling and Post-processor dura-
tion modeling.

In both approaches, we first need to calculate parametric
state duration models for each phoneme [17]. Several distri-
butions has been tested for this task (e.g. Gaussian), but Bur-
shtein showed that Gamma distributions are best at modeling
naturally occuring phoneme duration distributions [18]:

d(r) = Kexp{faT}Tpfl (1)

where 7 = 0, 1, 2, ... are the possible state durations in frames
and K is a normalizing factor. The parameters o and p are
estimated according to

R E{T . E%{r

o= U 5 B @)

VAR{r} VAR{r}

where F is the distribution mean and V AR is the distribu-
tion variance. We estimate F and V AR empirically using a
small portion of the singing data that has been annotated with
phoneme occurences.




23rd European Signal Processing Conference (EUSIPCO)

Phoneme statistics »

State Keyword search using
duration

7

/' Occurences /
—h/ of requested
keyword

| keyword-filler HMMs

probability 7| with explicit-duration
matrix modeling
Keyword search using Post-processor /' Occurences
Audio Feature | Phoneme / Phoneme / keyword-filler HMMs | duration modeling of requested
/' data extraction recognition [’/  posteriors keyword

Fig. 2: Overview of our keyword spotting system. The yellow blocks show the two duration modeling approaches. Purple

blocks are influenced by phoneme duration statistics.

Internal duration modeling: Explicit-duration HMMs
In this approach, the duration modeling is incorporated di-
rectly into the Viterbi alignment. This means that the Viterbi
output will already be a state sequence that is optimal with re-
gards to the a-priori phoneme duration knowledge. It is, how-
ever, computationally expensive. HMMs with such duration
limits are also sometimes called Hidden state semi-Markov
models (HSMMs).

As suggested in [19], we replace the HMM’s standard transi-
tion probabilities with:

, _ Di(r)—di(r) . _ dil7)

i = T(T)’ai’j = Di(7) 3)

a

D;(7) is the probability of state ¢ being active for ¢ > 7:
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Dy(r) =) di(t) )

(d;(t) is calculated according to Eq. 1).

As suggested in [19], we also include minimum and maxi-
mum durations by setting a7 ; to 1 while 7 is below the min-
imum duration, and to 0 when it is larger than the maximum
duration. The minimum and maximum durations were also
obtained from our singing data set.

For the Viterbi algorithm, we use the efficient implementation
described in [20].

Post-processor duration modeling Duration modeling can
also be imposed on the result of the Viterbi alignment, the ob-
tained state sequence. This is computationally cheap, but only
results in a new likelihood score for the obtained sequence
and does not provide better possible state sequences. As de-
scribed in [16], the state sequence obtained from the Viterbi
alignment can afterwards be rescored according to:

N
log f =log f+7 ) di(mk) )

k=1

where f is the original likelihood of the sequence, v is a
weighting factor, ¥ = 1...N are the discrete states in the
state sequence, 7 are their durations, and dj(7x) is, again,
the probability of state k being active for the duration 7.
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Using keyword-filler HMMs, we only obtain one state se-
quence per utterance, which either contains the keyword or
not. We therefore have no comparisons for these likelihood
scores and cannot directly apply Eq. 5. To still be able to in-
tegrate post-processor duration modeling, we tune our HMM
parameters to obtain a high recall value. Then, we calculate
the duration likelihood (second half of Eq. 5) for all found
occurrences of the keyword and normalize it by the number
of states taken into account:

1 N
dl =+ ;dk(q (6)

We then discard all occurrences where dl is below a certain
threshold.

5. EXPERIMENTS

We test both approaches described in section 4 on our singing
data set. Additionally, we tested for both approaches whether
they perform better when all phoneme durations are limited
or when the limitation only concerns consonants.

The utterance-wise I} measure was used to evaluate all ex-
periments.

w ED for non-keyword states
0.5 M Explicit duration for all states

M ED for keyword states
0.4

0.3
0.2

F1 measure

0.1

MFCC TRAP PLP RASTA-PLP

Fig. 3: Results of experiment 1: Applying the explicit duration
limit (ED) to the non-keyword states, to all states, and to the
keyword states only.

5.1. Explicit-duration HMMs

For Explicit-duration HMMs, we first tried imposing the du-
ration limits on the whole keyword-filler HMM, on the filler
HMM only, so that the keyword states were unlimited, and
on the keyword HMM states only. The results are shown in
figure 3.
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Fig. 4: Results of experiment 2a: Comparison of results with-
out duration modeling and results with explicit duration mod-
eling on all states (for all phonemes and for consonants only).

The results are highly dependent on the employed feature,
but applying the limit to the keyword states seems to be more
important than limiting the filler states. It is not important
what exact states are found in the filler model, only that the
keyword states are detected when the keyword occurs (i.e. in-
creasing the precision). When looking at the results of the
previous, unlimited system, it is also possible to tune the al-
gorithm to perfect recall in most cases, but precision is harder
to increase. Limiting the keyword states thus serves to remove
false positives.

We then compared the best results to the unlimited model.
In this experiment, we also tried both limiting the consonant
states only and limiting all states.

Figure 4 show the results for the system which limits both the
keyword and the filler HMM states. The results increase for
all feature configurations when Explicit-duration HMMs are
used. The best results are obtained with PLP features (im-
provement from 24% to 32%) and with TRAP features (15%
to 30%). This confirms the observation from [21] that TRAP
features work very well in keyword spotting.

As described in section 2, the vowel durations vary more than
the consonant durations. Consequently, the keyword spotting
produces better results when only the consonant durations are
limited.

Figure 5 shows the same experiment for the system that only
limits the keyword states. As before, there is a notable im-
provement over the unlimited model, e.g. to 33% and 32%
for PLPs and TRAPs, respectively. Limiting only the key-
word consonants decreases the result here since so few states
are concerned at all.

5.2. Post-processor duration modeling

As a third experiment, we tried a simple post-processor du-
ration modeling approach. We ran unlimited the unlim-
ited HMM algorithm and then discarded found keyword
occurrences with implausible phoneme durations (see section
4.3.2) in order to increase precision. The results are shown in
figure 6.

This simple approach works even better than the Explicit-
duration HMM approach. The TRAP and PLP systems pro-
duce F; measures of 39% and 37%, respectively. A similar
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Fig. 5: Results of experiment 2b: Comparison of results with-
out duration modeling and results with explicit duration mod-
eling on the keyword states (for all phonemes and for conso-
nants only).

i No explicit phoneme durations
0.5 M Duration modeling for all phonemes
M Duration modeling for consonants only

F1 measure
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Fig. 6: Results of experiment 3: Comparison of results with-
out duration modeling and results with post-processor model-
ing (for all phonemes and for consonants only).

effect was observed in [22].
Limiting the consonants only does not change the result sig-
nificantly when using Post-processor duration modeling.

6. CONCLUSION

We created a new keyword spotting system which uses
keyword-filler HMMs to detect the required keyword and
also employs duration modeling. This combination has not
been presented before. We tested two approaches for duration
modeling: Explicit-duration modeling and Post-processor du-
ration modeling. Compared to the previous model without
duration limits, we obtained better results for all feature con-
figurations.

For Explicit-duration modeling, limiting the keyword states
proved more advantageous than limiting the filler states, pre-
sumably because the filler states do not have to be detected
exactly, but the keyword states do. Additionally, the results
were slightly better when limiting only the consonant states,
except when only the keyword consonants were limited. The
best result was obtained using PLPs and a model that only
limited the keyword states with an F; measure of 33%.
Secondly, we tested Post-processor duration modeling to im-
prove the precision of an unlimited HMM. We obtained even
better results; the best F| measure of 39% was produced by
the TRAP configuration.

The keyword detection is somewhat hampered by the small
size of our data set. Bad results for some keywords occur be-
cause these keywords are only present in one song each, and



23rd European Signal Processing Conference (EUSIPCO)

the singer uses an unusual pronunciation. It also means that
we do not have a lot of singing training data for our acoustic
model, which would improve the result as shown in [5].

7. FUTURE WORK

As mentioned in the conclusion, a big hindrance to our re-
search is the small size of our data set. We would therefore
like to expand this data set, possibly by using a bootstrapping
mechanism [23].

As shown in [14], tri-phone models often provide better re-
sults than the monophone models used by us. We would also
like to integrate a-priori information about the language in the
shape of language models. Phonetic search algorithms as de-
scribed in section 2 could improve the system as well.
Looking further ahead, we would like to use our algorithm
for polyphonic music instead of unaccompanied singing. Pre-
processing steps will be necessary for this task, such as vocal
emphasis, vocal activity detection, and perhaps source sepa-
ration. The results can be used for the purposes described in
section 1, such as genre classification or language identifica-
tion.
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