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ABSTRACT
Texture analysis is central in many image processing prob-
lems. It can be conducted by studying the local regularity
fluctuations of image amplitudes, and multifractal analysis
provides a theoretical and practical framework for such a
characterization. Yet, due to the non Gaussian nature and
intricate dependence structure of multifractal models, accu-
rate parameter estimation is challenging: standard estimators
yield modest performance, and alternative (semi-)parametric
estimators exhibit prohibitive computational cost for large
images. This present contribution addresses these difficul-
ties and proposes a Bayesian procedure for the estimation
of the multifractality parameter c2 for images. It relies on a
recently proposed semi-parametric model for the multivariate
statistics of log-wavelet leaders and on a Whittle approxi-
mation that enables its numerical evaluation. The key result
is a closed-form expression for the Whittle likelihood. Nu-
merical simulations indicate the excellent performance of
the method, significantly improving estimation performance
over standard estimators and computational efficiency over
previously proposed Bayesian estimators.

Index Terms— Multifractal analysis, Bayesian estima-
tion, Hankel transform, Whittle likelihood, Texture analysis

1. INTRODUCTION

Context. Texture constitutes one of the central features
in images, and its characterization plays an important role in
a variety of image processing applications. Many different
mathematical models for texture have been developped. It
has been recognized that texture characterization can be effi-
ciently conducted within the mathematical framework of mul-
tifractal analysis, which provides a standard signal and image
processing tool that has been used in a large variety of ap-
plications, cf., e.g., [1, 2] and references therein. Multifrac-
tal analysis is a specific instance of scale invariance analysis
which enables the fluctuations of the pointwise smoothness
of image amplitudes to be studied: The texture of an image
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X(k) is characterized by means of the so-called multifractal
spectrum D(h) which is defined as the Hausdorff dimension
of the sets of points that have the same pointwise regularity
h (commonly measured with the so-called Hölder exponent,
cf. [3]). In practice, multifractal models translate into the
power law behaviors of the sample moments of appropriate
multiresolution quantities TX(a,k) (i.e., quantities that de-
pend jointly on scale a = 2j and spatial position k) of X(k),

S(q, j) ≡ 1

nj

nj∑
k=1

|TX(j, k)|q ' aζ(q), am ≤ a ≤ aM . (1)

Here, wavelet leaders `(j,k) will be used as multiresolution
quantities TX(a,k), which are considered to be the bench-
mark multiresolution quantities for multifractal analysis and
defined in Section 2.1 below [1, 3]. The exponents ζ(q) of
the power laws in (1), termed scaling exponents, are inti-
mately tied to the local regularity fluctuations of the image
amplitudes, measured by D(h), via a Legendre transform,
D(h) ≤ L(h) := infq∈R[1+qh−ζ(q)]. Notably, they enable
the formal discrimination between the two most prominent
classes of scale invariance models: self-similar processes, for
which ζ(q) is a linear function of q in the neighborhood of
q = 0 [4], and multifractal multiplicative cascade based pro-
cesses, for which ζ(q) is a strictly concave function [5]. The
decision whether a class or the other better models real-world
data is fundamental in applications because they imply com-
pletely different data production mechanisms: additive for the
former, and multiplicative for the latter. In practice, it can be
cast into testing the linearity of ζ(q) at q = 0 [1, 6] by con-
sidering the development of ζ(q) as a polynomial at q = 0,
ζ(q) =

∑
m≥1 cmq

m/m!. One can show that c2 < 0 for mul-
tiplicative cascades while c2 ≡ 0 for self-similar processes
(cf., e.g, [6]) and c2 ≡ 0 implies that cm ≡ 0, ∀m ≥ 3 [3].
The estimation of c2, termed the intermittency or multifrac-
tality parameter, is therefore central in multifractal analysis.
Estimation of c2. In the seminal contribution [7], it was
shown that the coefficients cm are related to the cumulants
of the logarithm of the multiresolution quantities (here, the
wavelet leaders `X(j,k)). In particular, the variance of the
log of wavelet leaders is given by the expression

C2(j) ≡ Var [ln `X(j,k)] = c02 + c2 ln 2j . (2)
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The parameter c2 can thus be estimated by linear regression
of the sample variance V̂ar of the log-leaders with respect to
scale j

ĉ2 =
1

ln 2

j2∑
j=j1

wj V̂ar [ln `(j,k)] (3)

where wj are suitable regression weights. The main limita-
tion of (3) is that it requires a sufficient number of scales to
be available and hence sufficiently large images (in practice,
images of size N ×N&512× 512) to yield satisfactory per-
formance. As an alternative to (3), a generalized method of
moments has been proposed [8], relying on fully parametric
models that are often too restrictive in applications.

To overcome such limitations, it has recently been pro-
posed to conduct the estimation of c2 in a Bayesian frame-
work [2,9]. The method relies on the use of a semi-parametric
Gaussian likelihood model for the multivariate statistics of
the log-leaders. The model is generically valid for multi-
fractal multiplicative cascade processes and imposes minimal
assumptions (essentially, (2)) on data. To enable the evalu-
ation of the likelihood for images, a Whittle approximation
was used in [2] that expresses the likelihood in the spectral
domain. The Bayesian estimators associated with the model
were then approximated using a Markov chain Monte Carlo
(MCMC) algorithm. The method is robust and significantly
improves estimation performance when compared to (3). Yet,
the variance-covariance model does not lead to a closed-form
expression of the Whittle likelihood and its successive eval-
uations in the MCMC algorithm are thus costly, practically
prohibiting its application to very large images.
Goals and contributions. This present contribution pro-
poses a Bayesian estimation procedure for c2 for images that
is effective and efficient for both small and large images. The
proposed procedure extends the work presented in [2] by de-
veloping an original formulation of the multivariate Gaussian
model leading to a more efficient algorithm.

The key contribution resides in the derivation of a closed-
form expression for the spectral density associated with the
multivariate Gaussian model for log-leaders. This contribu-
tion is specific for the analysis of images. First, the model
is expressed in continuous time and its radial symmetry is
exploited for expressing the associated spectral density as a
Hankel transform [10]. Second, by evaluation of the Hankel
transform, we obtain closed-form expressions for the radial
component of the spectral density model in which the param-
eters are made explicit. Finally, this closed-form model is
discretized and substituted in the Whittle approximation.

The performance of the proposed Bayesian estimation
procedure for the parameter c2 of images are assessed with
Monte Carlo simulations for synthetic multiplicative cascade
based multifractal processes, showing the clear benefits of
the proposed method: it strongly outperforms (3) in estima-
tion performance and significantly reduces computation time
when compared to the solution of [2].

2. BAYESIAN MODEL AND ESTIMATION

2.1. Wavelet coefficients and leaders.

Let φ(x) and ψ(x) denote the scaling function and mother
wavelet defining a 1D multiresolution analysis [11]. 2D
wavelets can be defined as: ψ(0)(x) = φ(x1)φ(x2), ψ(1)(x) =
ψ(x1)φ(x2), ψ(2)(x) = φ(x1)ψ(x2), ψ(3)(x) = ψ(x1)ψ(x2).
The collections ψ(m)

j,k (x) = 2−jψ(m)(2−jx−k) of templates
of ψ0, dilated to scales a = 2j and translated to space posi-
tions x = 2jk, form a basis of L2(R2) for a well chosen ψ.
The (L1-normalized) discrete wavelet transform coefficients
of the image X are defined as d(m)

X (j, k) = 〈X,ψ(m)
j,k 〉, m =

0, . . . , 3 [11]. Let λj,k denote the dyadic cube of side length
2j centered at k2j and 3λj,k =

⋃
n1,n2={−1,0,1}λj,k1+n1,k2+n2

the union of this cube with its eight neighbors. The wavelet
leaders are defined as the supremum of the wavelet coeffi-
cients in this spatial neighborhood over all finer scales [1, 3]

`(j,k) , sup
m∈(1,2,3),λ′⊂3λj,k

|d(m)
X (λ′)|. (4)

2.2. Statistics of log-wavelet leaders for images

Extensive numerical simulations in [2,9] have shown that the
statistics of the log-leaders, l(j, ·) , ln `(j, ·), of multiplica-
tive cascade based multifractal processes can be well approx-
imated by multivariate Gaussian distributions. In [2], a model
for the covariance Cj(k,∆k) , Cov[l(j,k), l(j,k + ∆k)]
at scale j for images has been proposed. It is inspired by the
asymptotic covariance properties that are induced by the mul-
tiplicative cascade construction [5], can be parametrized by
the parameter vector θ , [c2, c

0
2]T and is given by

Cj(k,∆k)≈%j(|∆k|;θ),

{
%0j (|∆k|;θ) 0 < |∆k| ≤ 3

%1j (|∆k|;θ) 3 < |∆k|
(5)

where | · | is the Euclidian norm. The model (5) is radial
symmetric, with radial component defined by the functions
%0j and %1j . These functions are linear functions of ln(r + 1)
and ln r, respectively, and are defined as

%0j (r;θ) , aj ln(1 + r) + c02 + c2 ln 2j (6)

where aj , (%1j (3;θ)− c02 − c2 ln 2j)/ln 4 and

%1j (r;θ) , c2 ln(r/rj)I[0,rj ](r) (7)

where rj = b√nj/4c, b·c truncates to integer values, nj ≈
bN2/22jc is the number of wavelet leaders at scale j and
IA(r) is the indicator function of the set A. Note that %0j (r =
0;θ) reduces to the variance given in (2).

2.3. Likelihood, prior and posterior distributions

We consider the estimation of c2 here and therefore do not
consider the mean of the log-leaders in the model. The log-
leaders at scale j are centered, l̄(j,k) , l(j,k)− Ê[lX(j, .)],
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where Ê[·] is the sample mean, and stacked in the vector `j
according to the lexicographic order ki, i = 1, · · · , n2j .
Likelihood. For a given scale j, the statistical model and
notations above straightforwardly lead to the likelihood of `j

p(`j |θ),
(
(2π)njdet Σj(θ)

)− 1
2 exp

(
− 1

2
`Tj Σ−1j (θ)`j

)
(8)

where Σj(θ) is the covariance matrix with elements given by
[Σj(θ)]u,v = %j(|ku − kv|;θ). The log-leaders at different
scales are assumed independent. The likelihood for all cen-
tered log-leaders, L = [`Tj1 , ..., `j2 ]T , is thus given by

p(L|θ) =

j2∏
j=j1

p(`j |θ). (9)

Prior distribution. The parameter vector θ must be chosen
such that the variances C2(j) are positive for j = j1, . . . , j2,
which is ensured if θ belongs to the admissible set A =
(A+ ∪ A−) ∩ AM with A− = {(c2, c02) ∈ R2 | c2 <
0 and c02 + c2 j2ln 2 > 0}, A+ = {(c2, c02) ∈ R2 | c2 >
0 and c02 + c2 j1ln 2 > 0} and Am = {(c2, c02) ∈ R2 | |c02| <
c0,M2 , |c2| < cM2 }, where cM2 and c0,M2 are the largest admis-
sible values for c2 and c02, respectively. When no additional
prior information is available, a uniform prior distribution on
the set A is assigned to θ, i.e., π(θ) = UA(θ) ∝ IA(θ).
Posterior distribution and Bayesian estimators. The pos-
terior distribution of θ follows from Bayes rule

p(θ|L) ∝ p(L|θ) π(θ). (10)

It is used to define the minimum mean squared error (MMSE)
and maximum a posteriori (MAP) estimators in (11).

2.4. Gibbs sampler

Since the Bayesian estimators associated with (10) are dif-
ficult to compute, we investigate a Gibbs sampling strategy
to generate samples {θ(t)}Nmct=1 that are asymptotically dis-
tributed according to the posterior distribution (10). It relies
on successive sampling according to the conditional distribu-
tions associated with p(θ|L). Since these conditional distri-
butions do not correspond with standard laws, they are sam-
pled using a Metropolis-within-Gibbs procedure, defined by
random walks with Gaussian proposal distributions. More
precisely, given the state θ(t−1), two steps are computed.
Sampling according to p(c(t)2 |c

0,(t−1)
2 ,L). A candidate c∗2

is drawn from the proposal distribution pc2(c∗2|c
(t−1)
2 ) =

N (c
(t−1)
2 , σ2

c2). It is accepted (c(t)2 = c∗2) or rejected
(c(t)2 = c

(t−1)
2 ) with the Metropolis-Hastings ratio rc2 .

Sampling according to p(c0,(t)2 |c(t)2 ,L). A candidate c0,∗2
is drawn from the proposal distribution pc02(c0,∗2 |c

0,(t−1)
2 ) =

N (c
0,(t−1)
2 , σ2

c02
) and accepted (c0,(t)2 = c0,∗2 ) or rejected

(c0,(t)2 = c
0,(t−1)
2 ) with the Metropolis-Hastings ratio rc02 .

The Metropolis-Hastings acceptance ratios are defined by
rθ = p(θ∗|L)

p(θ(t−1)|L)

pθ(θ
(t−1)|θ∗)

pθ(θ∗|θ(t−1))
. The variances σ2

(·) of the

proposal distributions are chosen to yield acceptance ratios
rθ ∈ [0.4, 0.6] (see [12] for details on MCMC methods).
Bayesian estimators. The generated samples (after a burn-
in of Nbi samples) are used to approximate the Bayesian esti-
mators of θ as follows

θ̂
MMSE
≈ 1

Nmc −Nbi

Nmc∑
Nbi

θ(t), θ̂
MAP
≈ argmax

t≥Nbi
p(θ(t)|L).(11)

3. FAST COMPUTATION USING A WHITTLE
APPROXIMATION AND A HANKEL TRANSFORM

Whittle likelihood. The inversion of Σj(θ) in (8) at each
iteration of the Gibbs sampler is computationally intensive
and numerically problematic (large condition number) even
for small images. Therefore, it was proposed in [2] to re-
place the exact likelihood (8) by a Whittle approximation [13]
whose evaluation in the spectral domain is efficient and nu-
merically robust. Under the assumptions of Section 2.2, the
Whittle approximation of (8) is given by [13, 14]

p(`j |θ)∝ p†(`j |θ),exp−1

2

∑
m∈Jj

lnφj(ωm;θ)+
Ij(ωm)

φj(ωm;θ)

(12)
where Ij(ωm) , |

∑
k l̄(j,k) exp(−ikTωm)|2/nj is the

periodogram of {l̄(j,k)}, ωm = 2πm/nj and m ∈ Jj ,
[[b(−√nj−1)/2c:√nj−b

√
nj/2c]]2. The function φj(ωm;θ)

is the parametric spectral density associated with the co-
variance model (5). Finally, the approximation p†(L|θ) ,∏j2
j=j1

p†(`j |θ) replaces (9) in (10).
Numerical spectral density model. In [2], it was pro-
posed to compute the spectral density φj(ωm;θ) in (12) nu-
merically by using the discrete Fourier transform (DFT)

φDFTj (ωm;θ)=
∣∣∑

∆k

%j(|∆k|;θ) exp(−i∆kTωm)
∣∣. (13)

Practically, this means that at each step of the Gibbs sampler
a 2D DFT must be computed.
Closed-form parametric spectral density. In this work,
we derive a closed-form parametric expression for φj(ωm;θ)
that avoids the costly evaluations of 2D DFTs in (12) implied
by (13). The continuous spectral density associated with the
covariance model %j(r;θ) is given by Bochner’s theorem

φ̃j(ω;θ) =

∫
R2

e−i(x
Tω)%j(|x|;θ) dx. (14)

Note that because %j(|x|;θ) is a radial symmetric function,
its Fourier transform φ̃j(ω;θ) is also radial symmetric. It can
therefore be expressed as a Hankel transform [10], given by

φ̃j(ω;θ) = φ̃Hj (|ω|;θ) = 2π

∫ ∞
0

r%j(r;θ)J0(r|ω|) dr (15)

where Jn(·) is the n-th order Bessel function. To eval-
uate the integral (15), we make use of the identities: (i)
ρ
∫ R
0
rJ0(rρ)dr=RJ1(Rρ) and (ii) ρ2

∫ R
0
r ln(r/R)J0(rρ)dr
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|ω|

N = 28-[c2, j ] = [−0.02, 2]

−6

−4

−2

0

2

0 0.5 1 1.5 2 2.5 3 3.5 4

ln Ij(·)

ln φH
j (·; θ)

ln φDFT
j (·; θ)

Fig. 1. Radial evolution of the periodogram of MRW (black)
and of models (13) and (18) (red and blue, respectively).

= −(1 − J0(Rρ)) which are valid for R > 0, ρ > 0,
cf. [10, Tab. 17.1]. The function %1j (r;θ) is affine in ln(r)
as in (ii), and we thus break up the integration according to
the range of validity of %0j and %1j in (5), i.e., φ̃Hj (|ω|;θ) =

Aj(|ω|)+Bj(|ω|) withAj(|ω|)=2π
∫ 3

0
r%0j (r;θ)J0(r|ω|)dr

and Bj(|ω|) = 2π
∫∞
3
r%1j (r;θ)J0(r|ω|) dr. This yields

Aj(|ω|)
2π

= aj
ln 4

2π
I(|ω|)+(c02+c2 ln 2j)

3J1(3|ω|)
|ω|

Bj(|ω|)
2πc2

= B̃j(|ω|)=
J0(rj |ω|)−J0(3|ω|)

|ω|2
+

3ln(
rj
3 )J1(3|ω|)
|ω|

where I(|ω|) , 2π
∫ 3

0
r ln(1 + r)J0(r|ω|) dr/ ln 4. Group-

ing terms in c2 and c02 leads to the expression

φ̃Hj (|ω|;θ) = c2 fj(|ω|) + c02 gj(|ω|) (16)

for (15), where

fj(|ω|) , 2πB̃j(|ω|) + 3 ln 2j
J1(3|ω|)
|ω|

− I(|ω|) ln(
rj2

j

3
)

gj(|ω|) , 6π
J1(3|ω|)
|ω|

− I(|ω|). .

At last, (16) is discretized using spectral aliasing [14]

φHj (ωm;θ) ,
∑
p∈Z2

φ̃Hj (|ωm+2πp|;θ). (17)

Computation of φHj (ωm;θ). The infinite summation in
(17) is truncated to p∈ [[−K:K]]2, yielding the approximation

φHj (ωm;θ)≈ c2
∑

p∈[[−K:K]]2

fj(|ωm,p|)+c02
∑

p∈[[−K:K]]2

gj(|ωm,p|) (18)

where ωm,p , ωm+2πp. Note that the two functions fj and
gj do not depend on the parameters c2 and c02. The two partial
sums can thus be pre-calculated and stored for the discrete set
of frequencies ωm, using a quadrature rule for the computa-
tion of the integral I. The evaluation of (12) using (18) in the
Gibbs sampler then only requires updating with the parameter
candidates (c2, c

0
2) in (18) at each iteration.

4. NUMERICAL EXPERIMENTS

The proposed Bayesian estimator (using (18) in (12), de-
noted H) is compared to the Bayesian estimator in [2] (using
(13) in (12), denoted DFT) and to the standard linear re-
gression based estimator (3) (denoted LF) by applying them
to a large number of independent realizations of 2D multi-
fractal random walk (MRW) [15]. MRW is a non Gaussian

process whose multifractal properties mimic those of the
Mandelbrot’s multiplicative log-normal cascades and its scal-
ing exponents are given by ζ(q) = (H − c2)q + c2q

2 (the
reader is referred to [15] for precise definitions and details).

Experimental setup. The parameters of MRW are set to
H = 0.72 and c2 ∈ {−0.01,−0.02, . . . ,−0.1}. For the 2D
DWT, a Daubechies’s mother wavelet withNψ = 2 was used.
The weights wj in (3) are chosen proportional to nj (see, e.g.,
[1]). The summation in (12) is restricted to low frequencies
|ωm| ≤ π

√
η with η = 0.25 as in [2] and K = 3 in (18). The

parameters of the Gibbs sampler are set to Nmc = 2000 and
Nbi = 1000. Performance are quantified using the sample
mean m= Ê[ĉ2], standard deviation s=(V̂ar[ĉ2])

1
2 (STD) and

root mean squared error rms=
√

(m− c2)2 + s2 (RMSE) of
the estimates for 100 independent realizations of MRW.

Spectral density models. The radial components of the
spectral density models (13) and (18) are plotted in Fig. 1
(blue and red lines, respectively) and compared to those of
the periodogram of MRW (black curve, mean over 100 real-
izations). As expected, the DFT based expression (13) and
the closed-form expression (18) proposed in this work are nu-
merically close. Both yield good fits for the periodogram for
low frequencies. The benefits of the proposed model (18) will
become clear in the next paragraph.

Computational complexity. Fig. 2 investigates the com-
putational time T for the estimators LF, DFT and H for dif-
ferent sample sizes N . The computational time includes the
2D DWT for all methods. The pre-calculation of partial sums
in (18) is performed offline and not taken into account in T .
The estimator LF unsurprisingly exhibits the lowest computa-
tional cost. Among the Bayesian estimators, the proposed es-
timator H yields a significant reduction of the computational
time as compared to estimator DFT of [2], by a factor rang-
ing from 6 (small images) to 12 (large images). Neglecting
the computation of the 2D DWT and the 2D periodogram Ij
in (12), the order of the reduction factor can be estimated as∑j2
j=j1

nj ln(nj)/
∑j2
j=j1

nj since computing φj(ωm;θ) is of
complexity O(nj ln(nj)) when using (13) and O(nj) when
using the proposed expression (18). As a result, LF is only 30
times faster than H but 400 times faster than DFT forN=211.

Estimation of c2. Fig. 3 reports estimation performance
as a function of c2 for sample sizesN = 27 (top) andN = 28

(bottom). The performance for the MAP estimators are sim-
ilar to the MMSE estimators and not reported for space rea-
sons. Clearly, the Bayesian estimators H and DFT both yield
excellent estimates for c2. They significantly improve esti-
mation quality as compared to LF, both in terms of bias and
standard deviation. As a result, RMSE values are reduced by
a factor up to 4. The bias and RMSE reduction yielded by H
and DFT is particularly pronounced for small images. It is in-
teresting to note that STD approaches 0 faster with decreasing
|c2| for the Bayesian approach than for LF, resulting in larger
STD gains for H and DFT for small values of |c2|.
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Fig. 2. Computational time T versus log2 of sample size N
with j1 = 2 and j2 = log2N − 4 for all methods.
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c2
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−0.08−0.06−0.04−0.02

LF

DFT

H

c2

N = 2
8

−0.08−0.06−0.04−0.02

c2

−0.08−0.06−0.04−0.02

Fig. 3. Estimation performance for c2 for sample size N =
{27, 28} using scales (j1, j2) = {(1, 3), (2, 4)} (top and bot-
tom plots, respectively): bias, STD, RMSE (from left to right)

5. CONCLUSIONS AND PERSPECTIVES

A Bayesian approach for the estimation of the multifrac-
tality parameter c2 for images was proposed. It relies on
a semi-parametric model for the multivariate statistics of
log-leaders of multiplicative cascade based multifractal pro-
cesses. An MCMC algorithm was devised for approximating
the Bayesian estimators associated with the posterior dis-
tribution. The computation of the estimators was enabled
through the use of a Whittle approximation in the Bayesian
model. The key contribution resides in the derivation of a
closed-form Whittle approximation via a Hankel transform,
which significantly reduces computational cost. The pro-
posed method realizes, to our knowledge, the first Bayesian
estimator for the parameter c2 that can actually be applied to
real-world images of both small and large size. Numerical
simulations conducted on synthetic multifractal processes
highlight its excellent estimation performance and its compu-
tational efficiency as compared to previous formulations.

The efficiency of the method could be further improved
by performing computations entirely in polar coordinates, ef-
fectively reducing most 2D calculations to 1D calculations
due to radial symmetry. Furthermore, the closed-form Whit-
tle likelihood enables the use of more efficient Hamiltonian
Monte Carlo algorithms in the Metropolis-within-Gibbs pro-
cedure for the analysis of multivariate images (multi-band,
multi-temporal) and large numbers of image patches in re-
mote sensing and biomedical applications. These aspects are
currently under investigation.
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