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ABSTRACT

Localization-based multichannel source separation algorithms
typically operate by clustering or classifying individual time-
frequency points based on their spatial characteristics, treating
adjacent points as independent observations. The Model-based
EM Source Separation and Localization (MESSL) algorithm
is one such approach for binaural signals that achieves addi-
tional robustness by enforcing consistency in inaural parame-
ters across frequency. This paper incorporates MESSL into a
Markov Random Field (MRF) framework in order to addition-
ally enforce consistency in the assignment of neighboring time-
frequency units to sources. Approximate inference in the MRF
is performed using loopy belief propagation (LBP), and the
same approach can be used to smooth any probabilistic source
separation mask. The proposed MESSL-MREF algorithm is
tested on binaural mixtures of three sources in reverberant con-
ditions and shows significant improvements over the original
MESSL algorithm as measured by both signal-to-distortion
ratios as well as a speech intelligibility predictor.

Index Terms— Binaural separation, Spectral masking,
Markov Random Fields

1. INTRODUCTION

Spectral masking is a technique for suppressing unwanted
sound sources in a mixture by applying different attenuations
to different time-frequency (T-F) points in a spectrogram [1].
A number of binaural (i.e., two-microphone) systems have
combined localization-based clustering with spectral masking
(see for example [2-5]). The Model-based Expectation Maxi-
mization Source Separation and Localization (MESSL) algo-
rithm performs mask-based separation by clustering T-F units
in the joint space of interaural phase differences (IPD), inter-
aural time differences (ITD), and interaural level differences
(ILD) [5]. It has also been extended to include frequency-
dependent parameters, a prior on the ILD means given the
ITDs, and the non-linear warping of probabilities to masks. [6]
combined the spatial separation of MESSL with a probabilis-
tic source model. Instead of estimating a single maximum
likelihood setting of parameters, [7] uses variational Bayesian
inference to estimate posterior distributions over the MESSL
parameters. Instead of a grid of ITDs, [8] used random sam-
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pling to extract the best IPD-ILD parameters for a multichannel
configuration.

One widely recognized problem that arises in mask-based
separation is musical noise due to isolated false positive T-
F points in the mask. Several approaches have attempted
to alleviate this problem by applying a separate smoothing
process after estimating their masks [9-12]. In contrast, the
current paper proposes embedding the MESSL algorithm into
a grid-shaped pairwise Markov random field (MRF) to simul-
taneously estimate model parameters and smooth T-F masks.
In image segmentation applications, these models have been
shown to be effective at combining evidence across neighbor-
ing pixels. While exact inference in these models is intractable,
a number of approximation methods have been shown to be
effective, including graph-cuts and loopy belief propagation
(LBP) [13]. In addition, learning the parameters of an MRF
model is typically intractable, but it has been shown that ap-
proximate learning using expectation maximization can pro-
vide a reasonable approximation in practice for segmenting
noisy images [14, 15].

MREFs have been used in several speech separation systems
recently [16, 17]. [17] used an MREF in single-channel audio
source separation to smooth masks estimated by non-negative
matrix factorization. In an earlier paper [18], the same authors
utilized an MRF for binaural audio source separation, but
only use interaural level difference as the local feature. They
show that utilizing the connections between neighboring time-
frequency points can increase signal-to-distortion ratios. Our
model differs from [18] in that we are able to utilize IPD and
ITD in addition to ILD to perform source separation. We
have shown in the past that combining these features performs
substantially better than ILD alone [5]. In addition, the current
paper describes how the sum-product version of LBP can be
used to more efficiently compute smooth probabilistic masks
than the Gibbs sampling used by [18].

2. MESSL

Model-based EM source separation and localization (MESSL)
[5] is a binaural source separation system that clusters time-
frequency points based on similarities in interaural phase and
level differences (IPD and ILD). It performs this clustering
using expectation maximization (EM) on a Gaussian mixture
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model that has been augmented with an additional hidden
variable connecting IPD to interaural time difference (ITD).
This hidden variable allows it to overcome the maximum fre-
quency limit set by spatial aliasing that affects similar algo-
rithms (e.g., [3]). Avoiding this limitation is especially useful
when analyzing binaural recordings from real or dummy heads,
where spatial aliasing begins at 1-2 kHz.

The EM clustering results in a probability of each T-F
point of the spectrogram being in each source. The expected
complex value at each T-F point for each source can then be
computed by simply multiplying these probabilities with the
observations, corresponding to using the probabilities directly
as a soft time-frequency mask (MESSL-P). Alternatively, the
probabilities can be transformed into more of a Wiener-like
mask using a point-wise sigmoidal non-linearity, with param-
eters learned on a separate dataset (MESSL-W) [19, §5.2.4].
This point-wise non-linearity empirically improves separation
performance, but does not have a clear theoretical justifica-
tion. We compare both of these approaches to the proposed
approach in the experiments and show that the proposed ap-
proach without this point-wise non-linearity performs better
separation than both of them while having a much clearer
theoretical justification.

We now describe the MESSL model. In the absence of
additive noise or multiple talkers, which will be considered
shortly, a single source, s(t), arriving at two ears, £(¢) and
7(t), through channels h,(t) and h,.(t), can be written as

r(t) = s(t) x h,(t). (1)

The ratio of the short-time Fourier transforms, F{-}, of both
equations is the interaural spectrogram, which provides the
observations upon which MESSL operates

L(t) = s(t) * he(t)

‘F{g(t)} _ L(W,t) — loa(w,t)/Q()ej(b(w,t) (2)

Fir(t)}  R(w.1)

If the channel to each ear includes a sufficient amount of energy
from the direct-path, then these observations can be written as

A 104@)/20=3wT(@) N (4, 1) 3)

where a(w) is the ILD (measured in dB), 7(w) is the ITD, and
N(w,t) is a complex valued, time- and frequency-dependent
noise of relatively small magnitude.

In order to avoid spatial aliasing issues, we treat the inter-
aural delay as a discrete hidden variable. Instead of computing
7(w) directly from the ¢(w,t) observations, which leads to
ambiguous results for higher frequencies, we compare the ob-
servations to what we would expect them to be for each of a set
of discrete 7s, providing unambiguous estimates of the relative
support of the observation for each hypothesis. To measure
the difference between the IPD predicted by a particular 7 and
the observed IPD, we define the phase residual qAﬁ as

d(w, t;7) = arg (ej¢(w,t)e—jw7-) @
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which is always in the interval (—, 7). We model this phase
residual with a single Gaussian with a per-delay frequency-
dependent mean, £ (w), and standard deviation, o, (w),

p((b(LU, t) ‘ T, @) = N((ﬁ(w, t; T) | & (W)a Ug(w)) (5)

which is a good approximation when ¢, (w) and o, (w) are
small relative to 7. The ILD is also well modeled by a single
Gaussian with frequency-dependent mean and variance

plaw,t)[0) = N(a(w,t) | pw), 7" (@).  (©)

The IPD residual and ILD models are assumed to be condi-
tionally independent,

p(z(w,t)[7,0) = N(é(wat;ﬂ | €(w ,02(w))
N (a(w, t) | pw), W), (D)

where x(w, ) is the pair [¢(w,t), a(w, )] and O represents
all of the model parameters. Note that this assumption of
independence applies only between the IPD residual and ILD,
so does not contradict the well known correlation between
ILD and ITD in actual head-related transfer functions, which
is enforced instead between the means of these Gaussians,
& (w) and p(w). In this work, we model this correlation by
enforcing a prior on the ILD based on the initialization of the
ITD [19, §5.1]. Because the ILD is modeled as a Gaussian,
we use the normal-Wishart distribution, its conjugate, as the
prior [20]. The mean of this normal-Wishart is set from the
initial ITD using data on their relationship collected from
synthetic impulse responses, but the system is not especially
sensitive to particular values.

To model multiple sources, we introduce hidden binary
random variables zj, (w, t), which are 1 when time-frequency
point w, t comes from source k and delay 7. Thus our model
becomes a Gaussian mixture model, with one Gaussian per
combination of source and delay. We can thus use the EM
algorithm to learn the maximum likelihood model parameters,
O, from the observations in an unsupervised fashion, while
simultaneously estimating the expected values of the z, (w, t).
By marginalizing those expected values over delay, we can
compute the probability of each time-frequency point coming
from each source, probabilistically separating them.

Specifically, in the E step, we compute the likelihood

Vkr(w, ) = Tr - pla(w, t) | 7,0) (8)

where 7y, is the mixing coefficient for the Gaussian indexed
by k and 7. We then compute the posterior as

- ﬁk.,—(w, t)
vir(wt) = =S T ©)

In the M step, the parameters are updated to be weighted means
of sufficient statistics using this posterior [5].
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3. PAIRWISE MARKOV RANDOM FIELDS

A Markov random field (MRF) is an undirected graphical
model, representing the joint probability of several random
variables as a product of potential functions over subsets
of those variables [21]. Depending on the structure of the
graph, certain quantities can be estimated much more effi-
ciently because of this factorization. This work focuses on
pairwise MRFs, in which only pairwise interactions between
variables are non-zero and thus only pairwise potential func-
tions are necessary. The joint distribution of random variables
21,22, ..., 2N can then be written as

1

5 [ Yute ) [[witz)

1] 7

p(z1,22,...,2N) = (10)

where 1;(z;) is the potential function on variable z; by it-
self, perhaps induced by a corresponding observation, and
15 (2;, z;) is the pairwise potential function between z; and z;,
representing compatibilities between their various configura-
tions. Using the sum-product variant of the belief propagation
algorithm [22] it is possible to estimate the distribution of each
individual variable when all of the others are marginalized
away. In the case of tree-structured graphs, belief propagation
can compute these quantities exactly. In the case of graphs
with loops, it can only approximate these quantities, but it has
been shown that such approximations perform well [23].

A message m;;(z;) represents node 4’s belief in what the
distribution of node j should be. It is computed from the
messages incoming to node ¢ by

mz] Z] <_ CVZ%; ZZ)’Z] 1/% Z’L H mfz Zz (11)

Zi LEN(i)\Jj

where « is an arbitrary scaling factor and N (i)\j are the
neighbors of ¢ in the graph except for node j. After iterating the
passing of these messages until convergence, the algorithm’s
“belief” in the marginal distribution of z; can be computed as

(EN(4)

4. MESSL-MRF

We propose smoothing MESSL masks by using the MESSL
likelihood as the local potential in a grid-shaped pairwise MRF.
In the context of such a model, z; is the random variable rep-
resenting the source number responsible for the majority of
the energy at time-frequency point i'. If there are K sound
sources, then z; is a discrete K -dimensional multinomial ran-
dom variable. In our experiments, K was 3. The grid-shaped
MREF then has potentials between every T-F point and its four

IFor the purposes of the MESSL-MRF discussion, indices i and j are
shorthand for T-F coordinates (w;, t;) and (wj, t;).
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direct neighbors in time and frequency. Thus the potential func-
tion v;;(2;, z;) represents the compatibility between source z;
dominating T-F point 7 and source z; dominating T-F point j.
We set the compatibility potentials, 1;; (2, 2;), to

Yij (Zi7 Zj) = exp(—£d(zi, ZJ))

where 0(z;, z;) is the discrete Dirac delta function, which is 1
when z; = z; and O otherwise, and (3 is a parameter that we
tuned on a separate validation dataset. While simple, this po-
tential is standard in MRF approaches to image segmentation.

More sophisticated compatibility potentials are possible
and can be learned from training data. In particular, at low
frequencies, ground truth masks tend to be more correlated
across time because of the presence of strong lower harmonics.
At high frequencies, they are more correlated across frequency
because wideband bursts and frication noise. Thus a frequency-
dependent compatibility potential could be useful, but we leave
this approach for future work.

In MESSL-MRE, the local potential is defined as

ZV’” w, t

where we have changed notation from indexing hidden vari-
ables by i to w, t and v, (w, t) is defined in (9). We find the
maximum likelihood parameters © from the test data using
the EM algorithm [14, 15, 24]. Finding the true maximum
likelihood parameters in a grid MRF is infeasible for large
graphs because the normalization term 1/Z couples all of the
parameters of the distribution. One can approximate the pa-
rameters that maximize this true likelihood by instead finding
the parameters that maximize the unnormalized distribution.
When using this approximation, the MRF belief propagation
step is simply inserted between the E and M steps of a standard
EM algorithm. In MESSL, it thus becomes a mask smoothing
step. MESSL’s E step computes vy, (w, t), which defines the
local potential 1), ;(2.,¢) in (14). From these, LBP is run until
convergence to compute the soft beliefs, b, ¢ (%) from (12).
These are used to compute updated posteriors

bw,t (Zw,t)
Yo Vier (w, t)

And these are used in the standard MESSL M-step updates.

(13)

wwt Zwt (14)

Vir(w, 1) = vir (w, 1) (15)

5. EXPERIMENTS

We compared the effectiveness of the proposed MESSL-MRF
algorithm with both MESSL-P and MESSL-W on a two-
channel separation task involving three simultaneous talkers in
reverberation. The speech came from the TIMIT dataset [25].
The impulse responses were simulated using the shoebox room
model [26] incorporating measured anechoic HRTFs for the
direction of each arriving impulse. The simulated room was
9 x 5 x 3.5 meters, with the microphone approximately at the
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center of the room at position (4.47,2.53, 1.44). The sources
were positioned 1 meter away, with one source always straight
ahead and the other two sources positioned symmetrically on
either side at angles between 15° and 90° spaced every 15°.
Five different impulse responses were simulated at each angle,
with the simulated speaker position moved slightly between
each one. At each angle, 40 mixtures were created involving
66 unique, randomly selected TIMIT utterances. Several al-
gorithmic parameters were tuned on another separate set of
mixtures using different TIMIT sentences, but the same set of
impulse responses.

For all variants of MESSL we use the following settings,
based on [5]. For the first 4 EM iterations of 16 total, the
Gaussian means and variance for both ILD and IPD are fre-
quency independent. Gradually, the frequency regions across
which the means are tied contract until the parameters are fully
frequency-dependent. For MESSL-MREF, we increase § over
the course of the EM iterations as well, setting it to O for 4
iterations (effectively turning off mask smoothing), 0.2 for 4
iterations, and 0.5 for the last 8 iterations. The ITD parame-
ters ;. are initialized using the localization results from the
PHAT-histogram algorithm [27] and the ILD and IPD parame-
ters are initialized to be uninformative. The models include an
additional garbage source, which is initialized with flat ILD,
ITD, and IPD distributions, and used to absorb diffuse noises,
mainly reverberation from the sources. The probability of be-
ing in each source is kept constant over time by renormalizing
the m;, parameters appropriately.

The resynthesized time-domain separations were evalu-
ated using the Short Term Objective Intelligibility (STOI)
measure [28], and the performance measures provided by the
BSS_EVAL toolbox [29]. STOI is designed to predict the
intelligibility of source separation results, and provides an
output between 0, meaning unintelligible, and 1, meaning
perfectly intelligible. The BSS_EVAL toolbox computes the
signal-to-distortion ratio (SDR), which is a combination of the
signal-to-interference ratio (SIR) and signal-to-artifact ratio
(SAR). These metrics are measured in dB, with higher values
indicating better noise suppression performance. These met-
rics all require a reference version of the clean signal, and are
usually used for analyzing monaural systems. For our binau-
ral task we used the direct-path signals at the appropriate ear
as the reference. The separated sources were matched to the
appropriate reference source based on both of their locations.

Results from these experiments are shown in Table 1.
These results show each metric for each system at each dis-
tracter angle averaged across both ears, all three sources, and
the 40 mixtures at each angle. It can be seen that MESSL-
MREF performs best in all metrics at all angles, improving SDR
by approximately 0.6 dB and STOI by 0.02 at all angles. A
Bonferroni post hoc test with an o of 0.05 conducted on the
SDR metric indicates that the MESSL-MRF means are sig-
nificantly different than the MESSL-P and MESSL-W means
at all angles except 15° and 60°. In addition, for the STOI
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Table 1. Objective metrics averaged across both ears for all
three sources in 40 mixtures at each distracter angle. SDR,
SIR, and SAR come from the BSS_EVAL toolkit. MESSL-P
uses posteriors v, (w, t) directly as masks, MESSL-W warps
them with a point-wise nonlinearity, and MESSL-MREF is the
proposed MRF system. Bold entries are significantly better
than alternatives for a given angle.

Distracter angle

Metric ~ MESSL 15° 30° 45° 60° 75° 90°
P 0.04 229 355 228 260 224
SDR w —0.18 257 375 234 251 244
MRF 071 318 429 290 326 317
Un-proc 055 055 055 055 054 054
STOI P 0.64 069 071 069 069 0.69
w 062 069 072 069 069 0.69
MRF 062 071 074 071 071 0.71

metric, the MESSL-MRF means are significantly different
than the MESSL-P and MESSL-W means at all angles ex-
cept 15° and 75°. For both SDR and STOI, MESSL-P and
MESSL-W do not differ significantly at any angle. Thus, in-
corporating MESSL as the local potential of an MRF does lead
to smoother masks and produces separations with both better
objective quality and better objective intelligibility. Informal
listening tests confirm that there is less noise leakage between
sources and less musical noise when using the MRF.

6. CONCLUSIONS

This paper has introduced a Markov random field formulation
for binaural source separation. It uses the MESSL model as
the local potential and finds assignments of time-frequency
points to sources so that neighboring points tend to be as-
signed to the same source. It uses loopy belief propagation
for approximate inference in this model and expectation maxi-
mization for approximate learning. This assignment has the
effect of smoothing the estimated mask, reducing musical
noise and noise leakage. Future work includes learning a
frequency-dependent pairwise potential function and utilizing
the max-sum formulation of LBP to convert soft masks into
globally consistent maximum a posteriori binary masks.
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