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ABSTRACT 

 

We propose to use multiscale fractal dimension (FD)-based 

features for phoneme classification task at frame-level. 

During speech production, turbulence is created and hence 

vortices (generated due to presence of separated airflow) 

may travel along the vocal tract and excite vocal tract 

resonators. This turbulence and in effect, the embedded 

features of different phoneme classes, can be captured by 

invariant property of multiscale FD. To capture 

complementary information, feature-level fusion of 

proposed feature with state-of-the-art Mel Frequency 

Cepstral Coefficients (MFCC) is attempted and found to be 

effective. In particular, single-hidden layer neural nets were 

trained to compute the frame classification rate. Proposed 

feature was able to reduce the error rate by over 1.6 % from 

MFCC features on TIMIT database. This is supported by 

significant reduction in % EER (i.e., 0.327 % to 4.795 %)
1
. 

 

Index Terms— fractal dimension, multiscale analysis, 

phoneme-based frame classification, nonlinearity. 

 

1. INTRODUCTION 

 

Fractal dimension (FD) has been used and applied in various 

areas of engineering wherever it is essential to investigate 

the amount of irregularity or ruggedness of the object under 

consideration. Practically, every object that we encounter in 

real life is a fractal, as there is no perfectly circular or 

rectangular or of any other such artificially created object 

occurring naturally [1]. The FD has been successfully 

applied to many one-dimensional (i.e., 1-D) signals (called 

time series) to measure their chaoticity [2]. 

Inherent property of FD is expected to quantify the 

amount of nonlinearity in the underlying speech production 

system. These nonlinearities are explained by the 

aeroacoustic model of the vocal tract [3], which takes into 

account the non-acoustic fluid motion in the vocal tract as a 
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secondary source of sound, which is usually neglected by 

the linear source-filter theory. According to Sinder [4], these 

non-acoustic fluid motion influences the production of wide 

classes of phonemes (e.g., vowels, voiced and unvoiced 

plosives, fricatives, etc). However, the amount of non-

linearity producing turbulence varies for the different 

classes, which we attempt to quantify by using FD [5]. 

Many studies have tried to incorporate such features of 

different sounds into their pattern recognition methods. 

However, most of such techniques are used for classification 

between pathological vs. non-pathological voices [6-7], 

speaker identification [8] and other specific experiments [9-

10]. However, it was after studies reported in [5, 11-13, 2] 

that FD was formally used for recognition of isolated 

phonemes. Recently, 1-D FD had been used for ASR task 

which report improvement in accuracy [14].  

This paper is an extension of our previous work for the 

entire TIMIT database [15]. The spectral transitivity 

property of multiscale FD is experimented which is carried 

out by using a 39-D feature vector consisting of MFCC and 

FD features. The delta (Δ) and delta-delta (ΔΔ) features of 

MFCCs are known to capture spectral transitivity in the 

speech signal. The FD is known to capture the dynamics of 

the system [10], and will be shown to be a characteristic 

feature of the different phonemes. In addition, the paper 

emphasizes on the multifractal property of speech signal 

which is explicitly captured by the multiscale fractal 

dimension (MFD). Here, we investigate capabilities of MFD 

towards these aspects, by training single layer feed-forward 

neural network which classifies the given input frame into 

one of the 61 phoneme classes of TIMIT. 

Organization of the paper is as follows. Section 2 gives 

brief connection between speech and FD. Section 3 explains 

the relevance of MFD in phoneme-based frame recognition 

task. In Section 4, incorporation of MFD based features with 

MFCC to capture the nonlinearity in speech frame is 

explained, so that it can be used in frame classification task. 

Section 5 presents summary and conclusions.  
 

2. SPEECH AND FRACTAL DIMENSION 
 

There have been many efforts for characterizing the 

nonlinearities in non-acoustic fluid motion in the vocal tract. 

According to conservation of momentum, the Navier-Stokes 

equation for speech production is given by [6], [16]. 
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where  is the air density, p is the air pressure, u is the 

vector air particle velocity and ‘  ’ is the air-viscosity 

coefficient, assuming negligible flow compressibility. The 

Reynolds number (Re) is a characterizing parameter for 

measuring the aerodynamics. It has been shown in [17], [18] 

that speech production consists of dynamics which have 

very high value of Re, thereby generating turbulent airflow 

[19]. The turbulent nature of the airflow is caused because 

of the existence of eddies at multiple scales. In addition, by 

Kolmogorov’s law, velocity field can be modeled as a 

process V(x) whose increments has a variance given by [20]: 
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where k is the wave number in a finite non-zero range and r 

is the energy-dissipation rate and E(k, r) is the velocity-

wave number spectrum, i.e., Fourier transform of spatial 

correlations [20]. It is to be noted that r varies with the 

spatial location x. This essentially states that the energy of 

the signal varies along with its scale. This difference in 

energy between various scales is what gives rise to coherent 

structures such as vortices producing turbulence. Hence, it is 

essential to understand the multiscale characteristics of 

speech signal because of its inherent turbulence [5], [21].  

Multiscale fractal dimension. FD defined by Mandelbrot is 

given by [1],
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where N (ε) is the number of compact planar shapes of size ε 

required to cover the fractal objects under consideration. 

However, different speech segments have different levels of 

turbulence. Hence, ruggedness in 1-D speech signal would 

be different for different phonemes. Therefore, we need to 

measure FD at various scales of the covering object. The 

morphological FD is an efficient method for multiscale 

estimation of FD. The idea behind the algorithm is to 

measure the area covered by the object at various scales, 

( ) ( ),GA area S G    

where S is the object under consideration εG is the ε-scaled 

covering element and   is the nonlinear morphological 

dilation operation. The fractal dimension, FD, is defined as, 

0
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Eq. (4) and eq. (5) represent morphological FD algorithm 

for continuous case. The discrete version of the above 

algorithm is presented in [21]. These calculations are for 

value of ε=1. It has been proven that in order to move to 

next higher scale of ε, we iterate the process [21]. If we 

repeatedly perform this for say ε=1, 2,…, N times then we 

can achieve FDs with covering elements of size 

1 2, ,...,
s s s

N
f f f

seconds, which is known as multiscale FD. 

 

3. RELEVANCE OF FD FOR FRAME 

CLASSIFICATION TASK 
 

The multifractal nature of speech signals has been proved in 

[22-23]. The singularity spectrum, is a plot of the 

distribution of the FD of the set of points in a signal having 

the same Hӧlder exponent α (which is also called Lipschitz-

α, originally introduced in [24] to analyze the homogeneity 

of multifractal measures, which represent energy dissipation 

of turbulent fluids) [19]. It was then extended in [25] to 

multifractal signals. Fig. 1 shows the singularity spectrums 

for some segmented phonemes from TIMIT database using 

the FRACLAB tool [26].  

 

  

  
 

Fig. 1. Singularity spectrum for phonemes (a) /y/, (b) /d/(plosive), 

(c) /ae/ (vowel) and (d) /f/ (fricative). 
 

The plots in Fig. 1 indicate two evidences, viz., 1) within 

a single speech frame, there exists set of points with 

different Hӧlder exponents α, which have varying FDs. This 

means that within the speech frame, one can obtain more 

than one value of fractal dimension. Hence, use of 

multiscale FD is more appropriate over using 1-D FD value 

for the given frame. 2) In addition, the plots for various 

phonemes, show discriminative property of the singularity 

spectrum for speech frames. The plots represent the density 

of the distribution of points with various Hӧlder exponents. 

Therefore, it would be beneficial to have a multiscale FD for 

each frame. As described in [5], the multiscale FD of a 1-D 

time series describes variation of the measure of FD over 

different scales of structuring element. Hence, for a single 

phoneme, one can have different ranges of FD as will be 

described in Section 3.1.  

Let f(t) be a given speech signal for which disjoint cover 

is made of its support with intervals of size ‘ε’. Then the 

number of intervals that intersect Sα (i.e., set of all points in

t , where the pointwise Lipschitz regularity of f(t) is α),  
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Thus, the singularity spectrum D(α) is FD of Sα and it gives 

properties of Lipschitz-α singularities that appear at any 

scale ε.  
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3.1 FD as feature vectors 
 

The multiscale FD was calculated using the methodology 

depicted in Section 2. Scales of ε range from 1 to 64 (which 

correspond to scales of 1/16 ms to 4 ms). The value of ε 

between 11 and 64 are found to be most discriminative. 

Therefore, 53-D vectors for each frame are computed. The 

multiscale FD computed in this way, describe unique 

properties of the different classes of phonemes. For vowels, 

values of FD at lower scale (i.e., ≤ 1.2 ms) are low (between 

1.3 and 1.6) owing to less turbulence in vowel production. 

Furthermore, when scale is increased, FD increases owing to 

the similarity with the system with increasing signal 

frequency with constant sampling frequency [5]. In contrast 

for fricatives (which have high turbulence throughout their 

production) have a constant high value of FD at all scales. 

For semi-vowels, the value lies at mid-range (1.5 to 1.7). 

 

 

Fig. 2. Plot of phoneme /iy/ showing the 13 indices of MFD chosen 

to be used for recognition used in FSB as defined in Sec. 4.2. 

This variation in the plots can be exploited as measures 

similar to the spectral transitivity property of Δ and ΔΔ 

features while moving from the class of phoneme to the 

other. In this work, 39-D feature vector (i.e., 12 MFCC+1 

energy +13 FD +13 Δ-FD) is considered, which is compared 

with MFCC-EDA (where EDA is usual energy-delta-

acceleration extensions to MFCC) (i.e., 39-D) features. The 

results of the recognition tasks are shown in Table 1. 

Furthermore, in order to investigate whether the FD, Δ and 

ΔΔ of MFCCs are equivalent, 48-D feature vector (i.e., 

MFCC-EDA + 3-FD + 3 Δ-FD + 3 ΔΔ-FD) is also 

considered. Secondly, the choice of specific number of 

components from 53-D raw vectors obtained from the 

morphological operations on the signal has to be dealt with. 

It should be noted that the additional components should 

provide better discrimination between different phonemes 

rather than being redundant. Accordingly, the components 

are chosen as per the plot shown in Fig. 2, where the 

coordinates, at which the dynamics for different phonemes 

were most discriminating, are highlighted. 
 

3.2 Procedure for building frame classification system 
 

The TIMIT database is used to evaluate the performance of 

features which capture the multiscale nonlinearity from the 

speech signal in phoneme classification task. TIMIT is 

provided with a set of manually labeled files (sample-level) 

for all the utterances. These are converted into frame-level 

labels as per the specifications used for calculating the 

various feature vectors. More specifications will be 

mentioned in Section 4.2. These label files are taken to be 

true labels to be used for training a single hidden layer 

neural network [27]. The features’ discrimination capability 

is evaluated by testing the model’s performance over the 

unseen cross-validation utterances. 

 

4. EXPERIMENTAL RESULTS 
 

4.1 Data 

 

The TIMIT database was used to perform the frame 

classification experiments [28-29]. The dataset contains 

6300 sentences (10 sentences each from 630 speakers). Out 

of these, the sentences from ‘sa’ category were removed as 

they were repeated sentences and hence could bias the 

system. From the remaining utterances, 3696 sentences 

(provided by TIMIT), with 8 utterances spoken by 462 

speakers each, were used for training the neural networks 

and the remaining full-test set containing 1344 sentences, 

with 8 utterances spoken by 168 speakers each (different 

from those used in training), were used for cross-validating 

the system’s performance.  

 

4.2 Setup 
 

In this work, 4 different MLPs were trained on the TIMIT 

database with following feature vectors, 

1. 39-D feature set A (FSA) (i.e., 12 MFCC +1 Energy + 13 

    Δ MFCC+ 13 ΔΔ MFCC).  

2. 39-D feature set B (FSB) (i.e., 12 MFCC +1 Energy + 13 

   FD + 13 ΔFD).  

3. 48-D feature set C (FSC) (i.e., 12 MFCC +1 Energy +13 

   Δ MFCC + 13 ΔΔ MFCC + 3 FD +3 ΔFD +3 ΔΔFD).  

4. 48-D feature set D (FSD) (i.e., 15 MFCC +1 Energy + 16 

   Δ MFCC + 16 ΔΔ MFCC). 

MFCC features are extracted using 25 ms window length 

with 10 ms shift. Similarly, FDs were extracted at frame-

level with same specifications. After the FD extraction per 

frame at various ε values, appropriate coefficients from the 

53-D vectors were augmented with the MFCCs as indicated 

in Section 3.1 to form FSB and FSC. In particular, for FSC, 

the 3
rd

, 6
th

 and 9
th

 coefficients were chosen with their Δs and 

ΔΔs making up a 48-D feature vector. FSD is constructed as 

a control feature to ensure that the improvement, if any, 

obtained with FSC, is absolute, and not just due to increase 

in dimensionality. For FSD, in order to obtain a 48-D 

MFCC feature vector, the number of filters was increased 

from 20 to 26 so that while picking the DCT components 

the averaging effect (due to broader filters at higher 

frequencies) for the higher components is reduced. Single-

hidden layer feedforward neural networks (also referred as 

multi-layer perceptrons, or MLPs in general) with varying 
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number of hidden neurons were built as shown in Table 1, to 

measure the discriminability of the features. The neural 

network used is taken to be a simple non-linear classifier so 

that the results obtained are least dependent on the language 

models (as in HMM-GMM modeling), and is only 

dependent on the type of features that is presented at its 

input. For all the features, a context window of 9 frames 

around the center frame is used. The number of output class 

is fixed to be 61, which is the number of phonemes as given 

in TIMIT for English language. All MLPs are trained using 

standard back-propagation algorithm, and employ the 

newbob learning rate schedule. 
 

4.2 Results 

 

       

   
 

Fig. 3: DET plots for various classifications (a) all 61 classes, (b) 6 

classes (c) vowels only and (d) nasals only. 

Table 1 shows the training accuracy and CV accuracy of all 

four features. In addition, the NIST standardized DET [30] 

are plotted in Fig. 3 for 3 features FSA, FSB and FSC with 

different groups of output classes. It is evident that FSC 

performed better than FSA, FSB and FSD. For the best 

performance, i.e., with 1700 neurons, FSC reduces the error 

rate (100 % - FCR) by over 1.6 %. FSB are not as 

discriminative as FSA or FSC, however, they do show 

promising results. Table 1 shows that FSD performs poorer 

than the 39-D MFCC (FSA), as increasing the number of 

filters to obtain higher orders of MFCC, may lead to poorer 

features which include harmonics. These features may prove 

ineffective, if not detrimental, for speech recognition task. 

Hence, we do not include them in the DET curves. 

Furthermore, from Table 2 at the point of equal error rate 

(EER), FSB is at slight edge over FSA which indicates the 

effectiveness of FD-based features over the Δ and ΔΔ 

features of MFCC. FD is expected to classify different 

classes of phonemes efficiently, as shown in Fig. 3(b). 

Similarly, for the case of vowels, nasals, semi-vowels, plosi- 

Feature 

set 

 No. of hidden neurons 

 1000 1500 1700 2048 2300 

FSA 
Tr. A 71.15 71.36 73.10 73.66 74.03 

CV A 62.14 62.68 62.56 62.30 62.45 

FSB 
Tr. A 64.49 64.05 64.23 63.91 64.09 

CV A 57.07 57.05 56.99 57.15 57.20 

FSC 
Tr. A 71.53 73.12 72.41 72.94 73.20 

CV A 62.26 61.93 62.60 62.74 62.72 

FSD 
Tr. A 72.19 72.98 73.38 73.94 74.39 

CV A 61.85 62.35 62.22 62.40 62.55 
 

Table 1: Best frame classification rates (FCRs) obtained for 

different features with different number of hidden neurons. 

 
 

 FSA FSB FSC 

 (Opt. DCF (×10-2)) 

All 61 classes 
12.445 

(1.37) 

12.212 

(1.43) 
10.982 

(1.39) 

Six classes 
13.623 

(1.57) 

12.651 

(1.51) 
11.454 

(1.44) 

Vowels 
18.125 

(1.54) 

14.875 

(1.38) 
13.33 

(1.34) 

Semi-vowels 
7.696 

(1.24) 

7.825 

(1.13) 
7.369 

(1.02) 

Fricatives 
9.044 

(1.48) 

7.678 

(1.26) 
7.652 

(1.18) 

Plosives 
9.875 

(1.38) 

10.045 

(1.42) 
9.341 

(1.38) 

Nasals 
4.814 

(1.02) 

4.179 

(0.9) 
3.923 

(0.77) 

Silence 
3.169 

(0.67) 

4.535 

(0.67) 
3.235 

(0.52) 
 

Table 2: % EER for various classes with different features. 
 

-ves and fricatives, the proposed features perform better 

than FSA. Table 2 indicates an improvement of more than 

1.6 % with the proposed features over traditional MFCC 

feature vectors. Table 2 also shows the minimum Detection 

Cost Function (DCF) [30] for the three set of features for 

Ptrue equal to (1/61). Cfa and Cmiss were selected to be 1. The 

optimum DCFs also show improvement with the proposed 

features. The number of genuine trials is Ng = 3, 99, 681 

(which equal the number of frames in the cross- validation 

dataset) and number of imposter trials are Ng ×60. The 

curves indicate that the proposed feature outperforms the 

others at all operating points of DET curve. 
 

5. SUMMARY AND CONCLUSIONS 
 

In this paper, effectiveness of FD-based feature is 

demonstrated for ASR task. Instead of Δ and ΔΔ of the 

MFCC, FD at various scales and its Δ’s were used. The 

result was an increase in % recognition accuracy as well as 

significant % EER reduction on the DET curves. This 

proves that FD captures some additional aspects of the 

speech signal than the MFCCs, Δ and ΔΔ. To this extent, we 

have proposed a new feature augmented with MFCC. FD 

successfully captures the dynamic information from the 

speech signal at the phoneme-level due to difference in 

levels of turbulence. Moreover, the transition from one class 
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of phonemes to the other is effectively detected by the 

proposed features. However, time complexity required for 

computing the 64–D multiscale FD is very high. Our future 

work would be directed towards finding the robustness of 

the proposed features under signal degradation conditions. 
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