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ABSTRACT

This work presents a cost-effective low-rank technique for
designing robust adaptive beamforming (RAB) algorithms.
The proposed technique is based on low-rank modelling
of the mismatch and exploitation of the cross-correlation
between the received data and the output of the beamformer.
We construct a linear system of equations which computes
the steering vector mismatch based on prior information
about the level of mismatch, and then we employ an orthogo-
nal Krylov subspace based method to iteratively estimate the
steering vector mismatch in a reduced-dimensional subspace,
resulting in the proposed orthogonal Krylov subspace pro-
jection mismatch estimation (OKSPME) method. Simulation
results show excellent performance of OKSPME in terms
of the beamformer output signal-to-interference-plus-noise
ratio (SINR) as compared to existing RAB algorithms.

Index Terms— robust adaptive beamforming, low-rank
techniques, low complexity methods.

I. INTRODUCTION

Adaptive beamforming has been one of the most im-
portant research areas in sensor array signal processing.
Conventional adaptive beamformers are extremely sensitive
to environmental uncertainties or steering vector mismatches
which may be caused by many different factors (e.g., im-
precise antenna size calibration, signal pointing errors or
local scattering). In order to mitigate the effects of uncertain-
ties on adaptive beamformers, robust adaptive beamforming
(RAB) techniques have been developed. Existing approaches
include worst-case optimization [2], diagonal loading [4],
and eigen-subspace decomposition and projection techniques
[6], [8], [11]. However, these RAB approaches have some
limitations such as their ad hoc nature, high probability of
subspace swap at low signal-to-noise ratio (SNR) [3] and
high computational cost due to online optimization or sub-
space decomposition techniques. Furthermore, in the case of
large sensor arrays the above mentioned RAB methods may
encounter problems for their application. This is because in
RAB algorithms a cubic or greater computational cost is
required to compute the beamforming parameters. Therefore,
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rank-reduction methods ([9],[15]-[24]) have been developed
to reduce the cost and improve the convergence rate.

In recent years, research efforts have been devoted to the
development of robust rank-reduction techniques for RAB.
The beamspace approach of [9] projects the data onto a lower
dimension subspace by using a beamspace matrix, whose
columns are determined by linearly independent constrained
optimization problems. A more effective approach (i.e., [19]-
[23]) is based on preprocessing the array received data using
a Krylov subspace. However, there are different ways to
generate the Krylov subspace and the choice usually depends
on the cost and the performance. The Arnoldi method
[12], [13], [24] and the Lanczos iterations [12], [13], [15]
are typical approaches used to generate orthogonal Krylov
subspaces, whereas [22] introduces a method to generate
non-orthogonal ones. However, the main challenge in these
techniques is the model order determination. Specifically, the
model order must be properly chosen to ensure robustness
against uncertainties and high performance [20].

In this work, we propose and study a novel RAB method
based on low-rank and cross-correlation techniques. In the
proposed method, we exploit prior knowledge that the steer-
ing vector mismatch of the desired signal is located within
an assumed known angular sector. The proposed method is
based on the exploitation of the cross-correlation between the
array received data and the output of the beamformer, which
avoids costly optimization procedures. We firstly construct
a linear system involving the mismatched steering vector
and the statistics of the sampled data. Then we employ
an iterative full orthogonalization method (FOM) [12], [13]
to compute an orthogonal Krylov subspace whose model
order is determined by both the minimum sufficient rank
[20], which ensures no information loss when capturing the
signal of interest (Sol) with interferers, and the execute-
and-stop criterion of FOM [12], [13], which automatically
avoids overestimating the number of bases of the computed
subspace. The estimated vector which contains the cross-
correlation between the array received data and the beam-
former output is projected onto the Krylov subspace in order
to compute the steering vector mismatch, resulting in the
proposed orthogonal Krylov subspace projection mismatch
estimation (OKSPME) method. We assess the signal-to-
interference-plus-noise ratio (SINR) performance of OK-
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SPME against existing algorithms via simulations.

The rest of this paper is organized as follows: The system
model and problem statement are described in Section II.
Section III introduces the proposed OKSPME method. Sec-
tion IV provides the complexity analysis. Section V presents
the simulation results. Section VI gives the conclusion.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider a linear antenna array of M sensors and
K narrowband signals which impinge on the array. The data
received at the ith snapshot can be modeled as

x(i) = A(0)s(i) + n(i), M

where s(i) € CX*! represents uncorrelated source signals
with zero mean, 8 = [0;,---,0k]T € RE is a vector
containing the directions of arrival (DoAs), A(0) = [a(6;)+
e, ,a(fk)] = [ai, - ,ax] € CM*K is the matrix which
contains the steering vector for each DoA and e is the
steering vector mismatch of the desired signal, n(i) € CM*1!
is assumed to be complex circular Gaussian noise with zero
mean and variance 2. The beamformer output is given by

y(i) = wx(i), )

where w = [wy, - ,wy]T € CM*! is the beamformer

weight vector, where (-)¥ denotes the Hermitian transpose.
The optimum beamformer is computed by maximizing the
SINR which is given by

Uf|wHa\2

SINR = 3

wHR; W'

where o7 is the desired signal power and R, is the

interference-plus-noise covariance (INC) matrix. The prob-
lem of maximizing the SINR in (3) can be cast as the
following optimization problem:
minimize w’ Ri,w
W 4
subject to wila =1,

which is known as the MVDR beamformer or Capon
beamformer [1], [4] The optimum weight vector is given
Ii{# Since R;y, is usually unknown in
practice, it can be estimated by the sample covariance matrix
(SCM) of the received data as

by wWopr =

R(P) = - > x(k)x" (k). )
k=1

Using the SCM for directly computing the weights will
lead to the sample matrix inversion (SMI) beamformer
Wong = affT However, the SMI beamformer requires
a large number of snapshots to converge and is sensitive
to steering vector mismatches [2], [3]. The RAB design
problem we are interested in solving includes:
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o The design of cost-efficient algorithms that are robust
against uncertainties in the steering vector.

o The proposed algorithms must preserve their robustness
and low-complexity features for large sensor arrays.

III. PROPOSED OKSPME METHOD

In this section, the proposed OKSPME method is intro-
duced. This method aims to construct a linear system involv-
ing only known or estimated statistics and then projects an
estimated cross-correlation vector between the array received
data and the beamformer output onto an orthogonal Krylov
subspace, so as to update the steering vector mismatch with
reduced complexity. The SCM of the array received data
is estimated by (5). The cross-correlation vector between
the array received data and the beamformer output can be
expressed as d = E[xy*] or equivalently as

d = E[(As +n)(As +n)w]. (6)

Assuming that the desired signal is statistically independent
from the interferers and the noise, (6) can be rewritten as

d = E[Ass" Af'w + nnf w]. @)
By also assuming that |a,,w| < |ajw| for m =2,--- | K,
the vector d can be rewritten as

d = E[o,%afwa; + nnfw], 8)

which can be estimated by the sample cross-correlation
vector (SCV) given by

d(i) = = > x(k)y" (k). ©)

k=1

III-A. Desired Signal Power Estimation

In this subsection, we describe an iterative method for
estimation of the desired signal power (0%) based on our
prior work in [10], which can be accomplished by directly
using the desired signal steering vector. We need to choose
an initial guess for the steering vector mismatch within the
presumed angular sector, say a;(0) and set a;(1) = a;(0).
By adding the snapshot index ¢, we can rewrite the received
data as

x(i) = ay( )+ Zak W)sp(i) +n(i).  (10)
Pre-multiplying the above equation by a{’ (i) and assuming
a;(7) is uncorrelated with the interferers, we obtain

aft (i)x(i) = at' (i)a1(i)s1 (i) + a1 (i)n(i). (11)
Taking the expectation of |af (i)x(i)|?,

(0)1%] = Bl(&y' (a1 (1)s1(:) + a' ())n(i))"
(af" (D (i)s1 (i) + a7 ()n(i)].  (12)

we obtain

Ellay (i)x
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Assuming that the noise is statistically independent from the
desired signal, then we have

Ellaf (0)x(i)|*] = [a1 ()a1(0)* E[|s1(5) ]
+all () En@)nt (i)]a (i), (13)

where E[n(i)n*!(7)] represents the noise covariance matrix
R, (i) which can be replaced by aﬁIM, where the noise
variance o2 can be easily estimated by a specific estimation
method. A proper approach is to use a Maximum Likeli-
hood (ML) based method as in [14]. Replacing the desired
signal power E||s1(i)|?] and the noise variance o2 by their

estimates 67 (i) and 62 (i), respectively, we obtain

520y _ A OXOE — af ()a,
' |af’ (i)au (i)
The expression in (14) has a low cost (O(M)) and can be
directly implemented if the desired signal steering vector and
the noise level are accurately estimated.

DD

III-B. Proposed Steering Vector Mismatch Estimation

An orthogonal Krylov subspace strategy is proposed in
order to estimate the mismatch with reduced cost and deal
with situations in which the model order is time-varying. Our
idea is based on constructing a linear system which considers
the steering vector mismatch as the unknown and solving it
by using an iterative Krylov subspace method. Consider a
general linear system model given by

Ba, = b, (15)

where B € CM*M and b € CM*1, Then we need to express
B and b only using available information (known statistics
or estimated parameters), so that we can solve the linear
system with the Krylov subspace of order m (m <« M)
described by

K,, = span{b,Bb,B?b,--- ,B"b}. (16)
Taking the complex conjugate of (11), we have

! (i) (i) = &l (Dar (i)si(0) +n” (Dan (). (A7)
Pre-multiplying both sides of (17) by the terms of (10) and
simplifying, we obtain

x(i)x" (i)ay (i) = & (i)af’ (i)a

1(4)s1(2)s7(4)
+n(i)nf ()a (7). (18)

H(i) by R(3), s1(i)si(i) by 63(i) and
(1)1, we obtain

Replacing x(4

)x
n(i)n” (i) by 62
R(0)a (i) = a1 ()&l (a1 (1)67(6) + 62 (Dan (i),  (19)

b(i)

in which by further defining the expression on the right-hand
side as b(7), we can rewrite (19) as

R(i)a, (i) = b(i). (20)
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Table I. Arnoldi-modified Gram-Schmidt algorithm
For j =1,2,.-- do:
Compute u; = f{tj
Forl=1,2,---,j, do:
hlyj =<uj,t; >
u; =u; — hl’jtl
End do.
Compute hj,j+1 = ||UJH
Ifhjijrl =0orj>K+1,
set m = j;
break;
Else compute t; 41 =

End do.

uj
hjj+1

As can be seen (20) shares the same form as the linear
system equation in (15) and B(z) can be expressed in terms
of &1 (i), 62(i) and 62 (i) whereas R() can be estimated by
(5). In the following step, we employ the Arnoldi-modified
Gram-Schmidt algorithm from the FOM method [12], [13]
associated with the minimum sufficient rank criterion dis-
cussed in [20] to compute an orthogonal Krylov subspace.
We define a residue vector to represent the estimation error
in the ith snapshot as

£(i) = b(i) — R(d)a (i), Q1)

and let

8= o e

Then the Krylov subspace bases can be computed using
the modified Arnoldi-modified Gram-Schmidt algorithm as
in Table I (the snapshot index ¢ is omitted here for sim-
plicity). In Table I, <,> denotes the inner product and
the parameters h;; (I,j = 1,2,---,m) are real-valued
coefficients, the model order is determined once if one of
the following situations is satisfied:

o The execute-and-stop criterion of the original Arnoldi-
modified Gram-Schmidt algorithm is satisfied (i.e.,
hjjt1=0).

o The minimum sufficient rank for dealing with the Sol
and the interferers is achieved (i.e., j > K + 1, where
K is the number of signal sources), so that no more
subspace components are necessary for capturing the
Sol from all the existing signal sources.

Now by inserting the snapshot index, we have

T(i) = [62(6), ta(@), -+, b (D), (23)
and the Krylov subspace projection matrix is computed by
P(i) =TT (4). (24)

It should be emphasized that the Krylov subspace matrix
T( i) obtained here is constructed by starting with the residue
vector (7). In other words, T(¢) is constructed with the
estimation error of the steering vector. In order to extract
the estimation error information and use it to update the
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Table II. Proposed OKSPME method
Initialization:
w(l) =1;
choose an initial guess a;(0) within the sector
and set a;(1) = a:(0).
For each snapshot 1 =1,2,---:

> x(k)x™ (k)

d(@) = § X x(k)y’ (k)

Compute the desired signal power

~20 _ [aff(@)x(@) > —1af’ (a1 ()16 ()

o1() = T war P

Determine the Krylov subspace

b(i) = a1())af’ (1)a1(i)67 (i) + 67 (i)aw ()

#(i) = b(i) — R(1)au (1)

t1() = iy

Apply the algorithm in Table I to determine

m and t1(2), - - ,tm (7)

T(i) = [t1(d), 62(4), - -+, tm (2)]

Update the steering vector

P(i) = T(i)T" (i)

A1 (7 — A (q P(5)d(4)

a1+ 1) =a()+ iy

a1(i+1) = a1 (i + 1)/[la (i + 1))

Compute the weight vector

Ritn (i) = R(i) — 67 (D (i)ar’ (1)
R (3)a1 (i)

all (R}, (a1 (2)

End snapshot

W(i) =

steering vector mismatch, we can project the SCV a(z) in
(9) onto P(i) and add the estimation error to the current
estimate of &, (4) as

ai+ 1) =4a()+ (25)

II-C. INC Matrix and Beamformer Weight Vector
Computation

Once we have estimated both the desired signal power
62(i) and the mismatched steering vector in the previous
subsections, the INC matrix can be obtained by subtracting

the desired signal covariance matrix out from the SCM as

Riin(i) = RG) - s2(Da()all (). (26)
The beamformer weight vector is computed by
R (i) (4)
NN 1+n
w(i) = = , 27

atl ()R, (4 (0)
which has a computational costly matrix inversion R} (i).
The proposed OKSPME method is summarized in Table II.
IV. COMPLEXITY ANALYSIS

The computational complexity is discussed in this sub-
section. We measure the total number of additions and
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Table III. Complexity Comparison

RAB Algorithms Flops
LOCSME [10] 4M3 +3M? 4+ 20M
RCB [4] 2M3 +11M7?

SQP [6] O(M?3%)
LOCME [7] QM3 +4M? +5M

Beamspace [9] O(M?3)
OKSPME M3 +27M? + 88M

multiplications (i.e., flops) in terms of the number of sensors
M performed for each snapshot by the proposed and the
existing algorithms. Note that the SQP method in [6] and the
beamspace-based approach in [9] have a highly-variable cost
over different snapshots, due to the online optimization based
on random choices of the presumed steering vector. The
average cost of these methods is O(M?>-%). The complexity
of the proposed OKSPME algorithm depends on the Krylov
subspace model order m, which is determined by Table I and
does not exceed K + 1. For the convenience of comparison,
we eliminate all parameters except M by setting them to
common values (the values of n in LCWC is set to 50,
m = K + 1, where K = 3) and list them in Table IIIL.

V. SIMULATIONS

In this section, we present and discuss the simulation
results of the proposed RAB algorithm by comparing it
to some of the existing RAB algorithms. We consider a
uniform linear array (ULA) of omnidirectional sensors with
half wavelength spacing. To produce all the figures, 100 rep-
etitions are executed to obtain each point of the curves and
a maximum of ¢ = 300 snapshots are observed. The desired
signal is assumed to arrive at §; = 10° and two interferers
are set to fo = 30° and #3 = 50°, respectively. The signal-to-
interference ratio (SIR) is fixed at 0dB. As prior knowledge,
the angular sector in which the desired signal is assumed to
be located is chosen as [¢; —5°, 01 +5°]. The results focus on
the beamformer output SINR performance versus the number
of snapshots, or a variation of input SNR (—10dB to 30dB)
under the coherent local scattering mismatch model, which
has a time-invariant nature and the steering vector of the
desired signal is modeled as

4
a;=p+ »_e*b(bs), (28)
k=1

where p corresponds to the direct path while b(6)(k =
1,2,3,4) corresponds to the scattered paths. The angles
0r(k =1,2,3,4) are randomly and independently drawn in
each simulation run from a uniform generator with mean 10°
and standard deviation 2°. The angles @i (k = 1,2,3,4) are
independently and uniformly taken from the interval [0, 27]
in each simulation run. Both 6 and ¢ change from trials

while remaining constant over snapshots.
We set the number of sensors to M = 12, the number
of signal sources to K = 3 and illustrate the SINR versus
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snapshots and the SINR versus input SNR performance in
Fig. 1 and Fig. 2 respectively. The results show that the
proposed OKSPME method has a better performance than
the LOCSME [10] and other previously reported algorithms.

SINR (dB)

=—HB— Optimum SINR

10 —O— LOCSME [10]

~—#— SQP [6]
Beamspace

—O— OKSPME

_15 i i i i
0 50 100 150 200 250 300

snapshots

Fig. 1. SINR versus snapshots

30

20

=—8— Optimum SINR
—O— LOCSME [10]
—i— SQP [6]
Beamspace
i : : : : : —O— OKSPME
-10 -5 0 5 10 15 20 25 30
SNR (dB)

Fig. 2. SINR versus SNR

VI. CONCLUSION

We have proposed the OKSPME RAB algorithm based
on the exploitation of cross-correlation mismatch estimation
and the use of the orthogonal Krylov subspace. Simulation
results have shown that OKSPME outperforms the prior
reported methods in terms of the beamformer output SINR,
while its complexity is much lower than those methods that
require complex optimization algorithms and comparable to
previously reported low-complexity methods.

VII. REFERENCES

[1] H. L. Van Trees, Optimum Array Processing, New York: Wiley, 2002.

[2] S. A. Vorobyov, A. B. Gershman and Z. Luo, “Robust Adaptive
Beamforming using Worst-Case Performance Optimization: A Solu-
tion to the Signal Mismatch Problem,” IEEE Transactions on Signal
Processing, Vol. 51, No. 4, pp 313-324, Feb 2003.

863

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Khabbazibasmenj, S. A. Vorobyov and A. Hassanien, “Robust
Adaptive Beamforming Based on Steering Vector Estimation with as
Little as Possible Prior Information,” IEEE Transactions on Signal
Processing, Vol. 60, No. 6, pp 2974-2987, June 2012.

J. Li, P. Stoica and Z. Wang, “On Robust Capon Beamforming and
Diagonal Loading,” IEEE Transactions on Signal Processing, Vol.
57, No. 7, pp 1702-1715, July 2003.

D. Astely and B. Ottersten, “The effects of Local Scattering on
Direction of Arrival Estimation with Music,” IEEE Transactions on
Signal Processing, Vol. 47, No. 12, pp 3220-3234, Dec 1999.

A. Hassanien, S. A. Vorobyov and K. M. Wong, “Robust Adaptive
Beamforming Using Sequential Quadratic Programming: An Iterative
Solution to the Mismatch Problem,” IEEE Sig. Proc. Letters., Vol.
15, pp 733-736, 2008.

L. Landau, R. de Lamare, M. Haardt, “Robust Adaptive Beamform-
ing Algorithms Using Low-Complexity Mismatch Estimation,” Proc.
IEEE Statistical Signal Processing Workshop, 2011.

J. Zhuang and A. Manikas, “Interference cancellation beamforming
robust to pointing errors,” IET Signal Process., Vol. 7, No. 2, pp.
120-127, April 2013.

A. Hassanien and S. A. Vorobyov, “A Robust Adaptive Dimension
Reduction Technique With Application to Array Processing,” IEEE
Sig. Proc. Letters. Vol. 16, No. 1, pp. 22-25, Jan 2009.

H. Ruan and R. C. de Lamare, “Robust Adaptive Beamforming
Using a Low-Complexity Shrinkage-Based Mismatch Estimation
Algorithm,” IEEE Sig. Proc. Letters., Vol. 21, No. 1, pp. 60-64, 2013.
J. P. Lie, W. Ser and C. M. S. See, “Adaptive Uncertainty Based
Iterative Robust Capon Beamformer Using Steering Vector Mismatch
Estimation,” IEEE Trans. on Sig. Proc., Vol. 59, No. 9, Sep 2011.
A. Filimon, “Krylov Subspace Iteration Methods,” May 2008.

H. A. van der Vorst, “Iterative Krylov Methods for Large Linear
Systems,” Cambridge University Press, 2003.

M. Morelli, L. Sangunietti and U. Mengali, “Channel Estimation for
Adaptive Frequency-Domain Equalization,” IEEE Transactions on
Wireless Communications, Vol. 4, No. 5, pp. 53-57, Sep 2005.

Z. Bai, “Krylov subspace techniques for reduced-order modeling
of large-scale dynamical systems,” Applied Numerical Mathematics,
Department of Computer Science, University of California, 2002.
R. C. de Lamare and R. Sampaio-Neto, “Reduced-Rank Adaptive
Filtering Based on Joint Iterative Optimization of Adaptive Filters”,
IEEE Sig. Proc. Letters, Vol. 14, no. 12, December 2007.

R. C. de Lamare and R. Sampaio-Neto, “Adaptive reduced-rank
processing based on joint and iterative interpolation, decimation, and
filtering, IEEE Transactions on Signal Processing, vol. 57, no. 7, July
2009, pp. 2503-2514.

R. C. de Lamare and R. Sampaio-Neto, “Reduced-Rank Space-Time
Adaptive Interference Suppression With Joint Iterative Least Squares
Algorithms for Spread-Spectrum Systems,” IEEE Transactions on
Vehicular Technology, vol.59, no.3, March 2010, pp.1217-1228.

R. C. de Lamare, M. Haardt and R. Sampaio-Neto, “Blind Adaptive
Constrained Reduced-Rank Parameter Estimation Based on Constant
Modulus Design for CDMA Interference Suppression,” IEEE Trans-
actions on Signal Processing, Vol. 56, No. 6, June 2008.

H. Ge, 1. P. Kirsteins and L. L. Scharf, “Data Dimension Reduction
Using Krylov Subspaces Making Adaptive Beamformers Robust to
Model Order-Determination,” in Int. Conf. Acoustics, Speech, and
Signal Processing (ICASSP), Vol. 4, 2006.

I. P. Kirsteins and H. Ge, “Performance Analysis of Krylov Space
Adaptive Beamformers,” Fourth IEEE Workshop, pp. 16-20, 2006.
S. D. Somasundaram, N. H. Parsons, P. Li and R. C. de Lamare,
“Data-Adaptive Reduced-Dimension Robust Capon Beamforming,”
Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), pp.
4159-4163, May 2013.

S. D. Somasundaram, N. H. Parsons, P. Li and R. C. de Lamare,
“Reduced-Dimension Robust Capon Beamforming Using Krylov-
Subspace Techniques,” IEEE Transactions on Aerospace and Elec-
tronic Systems, 2014.

V. Druskin and V. Simoncini, “Adaptive Rational Krylov Subspaces
for Large-Scale Dylymical Systems,” Systems and Control Letters,
Vol. 60, No. 8, pp. 546-560, 2011.



