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ABSTRACT
This paper proposes an approach based on compressed

sensing to reduce the footprint of speech corpus in unit se-
lection based speech synthesis (USS) systems. It exploits the
observation that speech signal can have a sparse representa-
tion (in suitable choice of basis functions) and can be esti-
mated effectively using the sparse coding framework. Thus,
only few significant coefficients of the sparse vector needed
to be stored instead of entire speech signal. During synthe-
sis, speech signal can be reconstructed (with less error) us-
ing these significant coefficients only. Furthermore, the num-
ber of significant coefficients can be chosen adaptively based
on type of segment such as voiced or unvoiced. Simulation
results suggest that the proposed compression method effec-
tively preserves most of the spectral information and can be
used as an alternative to existing compression methods used
in USS systems.

Index Terms— Compressed sensing, sparse representa-
tion, speech synthesis.

1. INTRODUCTION

In unit selection speech synthesis (USS), a pre-recorded
speech database is stored and at time of synthesis, appropriate
speech units from the database are selected and concatenated
to synthesize speech waveform [1]. The quality of synthe-
sized speech is subjected to availability of all speech units
(under different contexts) in the database, thus increases the
requirement of memory [2]. It is addressed in Flite system,
where linear predictive (LP) coefficients and residual error
for each unit are stored instead of raw waveform [3].

In this paper, a compressed sensing (CS)/sparse represen-
tation (SR) based approach is proposed to reduce the size of
speech data needed to be stored in USS systems. In the pro-
posed approach sparse representations of speech are obtained
in CS framework. Number of significant coefficients of the
sparse vector vary over different regions of speech such as
voiced and unvoiced. Hence speech waveform is compressed
by adaptively selecting the number of significant coefficients
along with index locations, without deteriorating the quality
of synthesized speech.

Recent work in [4], has also shown the application of CS
in speech coding where the dictionary or impulse response

matrix is constructed from LP coefficients to solve for a sparse
residue, similar to one obtained in multi pulse excitation LP
coder. The focus of present study is to demonstrate the use-
fulness of CS for compression of speech signals in the context
of USS systems and is different from approach in [4] as here
an analytical dictionary is used compared to LP coefficients
based dictionary used in [4]. The current work is not focused
on speech coding, instead the proposed approach exploits the
behavior of the sparse vector to demonstrate its potential for
reducing the footprint of USS systems. This method is differ-
ent from Flite speech synthesizer [3] as we are using sparse
vector in CS framework, whereas in [3] LP coefficients and
residual are used to reduce the footprint of USS system.

The method proposed in this paper focuses on: (i) CS/SR
based method for speech compression to reduce the size of
speech database in USS, (ii) a nonlinear approach is used
to select number of significant coefficients in sparse vector
for different speech regions (voiced, unvoiced and transitions
etc.).

The rest of the paper is organized as follows: In Section 2,
basics of CS for speech signals are discussed. Section 3 ex-
plains the proposed approach of compressing speech signal
using CS. Experimental observations are discussed in Sec-
tion 4. Proposed method is compared with existing speech
coders in Section 5 and the paper is concluded in Section 6.

2. COMPRESSED SENSING FOR SPEECH SIGNALS

CS/SR have recently drawn much interest in the field of
speech processing [5–7]. According to the theory of CS,
a signal can be reconstructed with minimum error from
less number of measurements, provided that signal has a
sparse representation in some domain/dictionary [8]. Let
s ∈ RN be the speech signal, and it is K sparse in a domain
Ψ ∈ RN×N , such that the corresponding representation has
only K (K � N) significant coefficients. Thus s can be rep-
resented with small error using only K significant projections
of sparse vector α on Ψ. Let us assume an ideal situation of
zero error, hence s = Ψα, where α ∈ RN is a sparse vector. In
CS, sampling is done by projecting the original speech signal
using a measurement matrix Φ ∈ RM×N (K < M � N). Thus

y = Φs = ΦΨα = Aα. (1)
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Here y ∈ RM denotes measured signal. Sparse vector α can
be estimated from measured signal y, provided measurement
matrix Φ satisfies restricted isometry property (RIP) and in-
coherence with sparse basis matrix Ψ [9]. The estimation of
sparse vector can be formulated as

α̂ = argmin
α

‖α‖1 subject to ‖y − Aα‖22 ≤ ε, (2)

which can be solved by linear programming methods [10],
where ε is a small error term. From sparse vector α̂ speech
signal can be reconstructed as ŝ = Ψα̂.

3. PROPOSED APPROACH OF COMPRESSING
SPEECH SIGNALS

A method based on CS is proposed to compress the speech
waveform for efficient utilization of memory in USS systems.
In this approach, significant coefficients of sparse vector, es-
timated using equation (2), are stored instead of storing all
the raw samples corresponding to a speech unit (in USS sys-
tem). During synthesis, individual speech frames and thus the
speech waveform are reconstructed using only significant co-
efficients of sparse vector α̂. Sparse representation of signals
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Fig. 1: (d), (e) and (f) show sparse vectors corresponding to voiced,
transition and unvoiced frames of original speech shown in (a), (b)
and (c), respectively. (g), (h) and (i) show voiced, transition and
unvoiced frames reconstructed using sparse vector.

has been studied using both analytical and signal dependent
learned dictionaries [11]. Learned dictionaries are not effi-
cient from storage point of view, while analytical dictionaries
doesn’t require storage space and can be generated at the time
of synthesis. Therefore, analytical dictionary (discrete cosine
transform (DCT) matrix) is employed in this work.

It has been observed that estimated sparse vector is ap-
proximately sparse, which is due to the fact that speech sig-
nal belongs to the category of compressible signal [12]. In
other words, non-significant coefficients of sparse vector are
not zero but close to zero. In addition, the magnitude of sig-
nificant coefficients has a lot of variations. This can be ob-
served in Fig. 1, where estimated sparse vectors of frames

from three different regions of speech signal i.e., voiced, tran-
sition and unvoiced are shown. The variance (of range of am-
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Fig. 2: Histogram of sparse coefficient α̂ for: (a) Voiced frames, (b)
transition frames, and (c) unvoiced frames, of speech signal.

plitude values) of significant coefficients of the sparse vec-
tor for voiced frame is very high (Fig. 1(d)), possible rea-
son being the vibration of vocal folds while producing voiced
speech [12]. But the same does not happen while produc-
ing unvoiced speech and hence variance of the corresponding
sparse vector is very low (see Fig. 1(f)). The behavior of the
sparse vector for the transition region lies between voiced and
unvoiced speech frames. The reconstructed speech waveform
using sparse vector and the original waveform are similar as
shown in Fig. 1. The behavior of sparse vector for three dif-
ferent regions of the speech signal is consistent and can be
observed in Fig. 2, which shows the histogram of the sparse
coefficients for 50 examples of each region (voiced, unvoiced
and transition). According to the variance of the estimated
sparse vector, three different regions of speech signal can be
arranged in descending order as: voiced, transition and un-
voiced. On the contrary, order will be reverse if the sparsity
index of estimated sparse vector is used. Thus for efficient
compression of speech segments both sparsity behavior and
variance of the sparse vector should be exploited. The coeffi-
cients estimated using the CS framework (α̂) are not same as
compared to the DCT coefficients and will be sparser, due to
the constraints employed to compute them.

4. EXPERIMENTAL OBSERVATIONS

Experiments performed are divided into three parts : (i) The
quality of reconstructed speech is checked using varying
number of significant coefficients of sparse vector used for
reconstruction. (ii) Quality of reconstructed speech using
proposed method is compared with compression scheme em-
ployed in Flite. (iii) Proposed speech compression method
is compared with standard speech coders in terms of MOS
scores and bit rates. The analysis of the proposed approach
is performed using Rajasthani speech data recorded in stu-
dio at 16KHz by a professional Rajasthani female speaker.
Speech is processed on short time frame basis with frame
size of 25ms, and is reconstructed using standard overlap add
method with a 50%. In this work DCT matrix is used as
a sparse basis (Ψ) to represent speech signal [13]. Sensing
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Fig. 3: Significance of sparse vector α̂: (a) Original speech. (b) Spectrogram of original speech. (c) and (d) shows spectrogram of recon-
structed speech using 5% and except 5% significant coefficients of sparse vector α̂.
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Fig. 4: Relative error in LSFs showing significance of sparse vector.

matrix Φ is constructed from Grassmannian frames [14] as
explained in [15] with M/N = 0.6 and value of error term ε
is chosen as 10−3. Sparse vector is obtained using YALL1
l1 solver [16]. It has been demonstrated that the lower or-
der formants plays an important role in speech synthesis [3].
Therefore the compressed data in the form of the sparse vector
should preserve lower order formants information. We have
reconstructed waveform with and without top P% significant
coefficients to see the information present in sparse vector.
Spectrograms of the reconstructed speech using different val-
ues of P are shown in Fig. 3. One can observe that lower
order formants are preserved better in Fig. 3 (c) compared to
Fig. 3 (d), which were derived using with and without top 5%
significant coefficients of sparse vector, respectively. Hence
only few significant coefficients can be used to reconstruct
the speech signal with good perceptual quality. However,
because of sparse nature of α̂, index locations of these co-
efficients are also needed to be stored. The observation that
first few coefficients contains most of the spectral informa-
tion can be statistically verified using error in line spectral
frequencies (LSF) coefficients. Fig. 4 shows averaged error
in LSF coefficients computed for 200 different speech utter-
ances reconstructed using corresponding sparse vector α̂. It
can be observed that error in lower order LSF coefficients is
much less for speech reconstructed using top P% significant
coefficients of α̂ as compared to rest (100 − P)% coefficients
of the same. It shows that few significant coefficients of the
sparse vector contain most of the information of lower order
formants and can be used to reduce the amount of memory
required to store a unit in USS system. Here we need only
P% significant coefficients along with their index locations
per frame to store the entire speech waveform.

The amount of memory can be further reduced by ob-
servation made in Fig. 2, which shows that the variance of
significant coefficients of sparse vector is very small for the
unvoiced speech frame as compared to voiced speech frame.
Hence, it is not recommended to take top P% significant coef-
ficients universally for all the regions of speech. One can vary
the number of significant coefficients depending on voiced or
unvoiced region. Fig. 5 (b) shows the spectrogram of the re-
constructed speech by choosing different number of signifi-
cant coefficients of sparse vector. In this example 10%, 5%
and 2% significant coefficients of sparse vector α̂ are used
for reconstruction of voiced, transition and unvoiced frames,
respectively. In our work these frames are marked manually
and the reconstructed speech is labeled as ‘Var’ but can be
done automatically also, as methods to detect such regions
with good accuracy are available for clean speech [?]. We
have also shown spectrogram of the reconstructed speech us-
ing top 10% significant coefficients of the estimated sparse
vector across all the speech frames. The results shows that
Fig.s 5 (b) and (c) are comparable, hence by storing different
number of significant coefficients depending on the speech
region the amount of memory can be reduced further without
degrading much the perceptual quality of synthesized speech.
Fig. 5 also shows the synthesized speech using Flite where LP
coefficients and residual are employed to reduce the footprint
of USS system. Spectrogram of the reconstructed speech is
better using the proposed approach of speech compression as
compared to compression employed in Flite system.

4.1. Comparison with Flite

In order to compare the performance of the proposed ap-
proach of compressing the speech signal with the method
used in Flite, averaged error in LSF coefficients of 200
different speech utterances and reconstructed speech utter-
ances is shown in Fig. 6. It can be observed that the error
in LSF coefficients comes down as the number of signif-
icant coefficients in the sparse vector used for reconstruc-
tion are increased. The error in LSF coefficients due to the
compression approach of varying number of significant co-
efficients (Var) does not deviate much from the error we
get using uniform number of significant coefficients (up to
10%) across all the regions. Hence for a frame of 25ms
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Fig. 5: Spectrogram of (a) Original speech. (b) Speech reconstructed using different sparse coefficients taken for voiced, unvoiced and
transition frames of speech signal (Var). (c) Reconstructed speech using 10% significant coefficients of sparse vector α̂. (d) Speech synthesized
using Flite.

Table 1: Averaged MOS and WER scores.

Significant Sparse Coefficients Flite5% 10% 20% 40% Var
MOS 2.19 2.95 3.73 4.2 3.14 2.98
WER (%) 9.65 8.42 7.95 7.18 7.57 8.03

duration sampled at 16KHz proposed approach requires (on
an average) 1

3

[(
400×10

100 + 400×5
100 + 400×2

100

)
× 2

]
= 45.3 coeffi-

cients. Here index locations are also included because the
location of significant coefficients of the sparse vector could
vary. On the contrary, in Flite, compression is achieved
by storing 16 LP coefficients and residual. Assuming only
40 coefficients of residual are stored in Flite to reduce the
amount of memory. Hence for each frame on an average
1
3 [(40 + 16) + (40 + 16) + (40 + 16)] = 56 coefficients are
required. Flite employs 56 coefficients for all the frames
irrespective of whether it belongs to voiced, unvoiced or
transition region. Thus the requirement of memory to store
speech signal in proposed method is less as compared to the
compression method of Flite.
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Fig. 6: Relative error of LSFs as a function of significant sparse
coefficients.

4.2. Comparison of perceptual quality

It is also recommended to measure the intelligibility of syn-
thesized speech using mean opinion scale (MOS) and word
error rate (WER) [17]. Table 1 shows averaged MOS and
WER for the proposed method and its comparison with Flite.
For both MOS and WER, 200 different speech utterances are
played in random order for 20 different subjects (10 speech

files per subject). Table 1 also indicates that proposed ap-
proach of compression (Var) gives improvement in speech
intelligibility over the method used in Flite. The proposed
compression method is capable of giving a MOS of 3.14 and
WER of 7.57% using storage space of 80.9% of standard Flite
system which has a MOS of 2.98 and WER of 8.03%.

5. COMPARISON WITH EXISTING SPEECH
CODING TECHNIQUES

We have also compared the proposed method of compressing
speech signal along with the existing speech coders avail-
able in terms of bitrate and MOS score. For calculating
bit rates and MOS scores mentioned in this section speech
used is sampled at 8KHz and is processed at a frame rate of
25ms. This is done in order to compare both MOS scores and
bit rates of proposed method with standard speech coders.
MOS scores are averaged scores for 200 sentences listened
by 20 subjects. For the case of Var in Table 2, number
of coefficients chosen are 20%, 10% and 2% for voiced,
transition and unvoiced frames (here speech is sampled at
8KHz). Thus for a frame size of 25ms sampled at 8KHz
average number of coefficients needed for each frame are
1
3

(
200×20

100 + 200×10
100 + 200×2

100

)
= 21.3. Because of sparse nature

of α̂ we need location of coefficients to be stored, thus total
number of coefficients needed to be stored are 21.3×2 = 42.6.
Assuming 4 bits are used to store each coefficient bit rate for
this will become 42.6× 4× 40 = 6816bps (number of frames
in a second are 40). Thus the bit rate for proposed system
becomes 6.82Kbps (approximately). On the similar lines
we calculated bitrates for other systems with 5%, 10%, 20%
and 40% significant coefficients per frame. These bitrates
are calculated to compare the proposed compression method
with standard speech coders. However the paper focuses on
compressing the speech signals (without quantization) stored
in USS system rather than speech coding. MOS scores and
bit rates for proposed method are comparable to the standard
speech coders. This supports our claim of using the proposed
method to compress the speech data needed to be stored in
USS systems.
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Table 2: Averaged MOS and bitrates for proposed method and standard speech coders.

Proposed Method with
Significant Sparse Coefficients Standard Speech Coders

5% 10% 20% 40% Var CELP
(FS-1016)

AMR-CELP
(G.722.2)

ACELP
(G.723.1)

LD-CELP
(G.728)

MELP
(G.728)

LPC-10
(FS-1015)

MOS 2.15 2.89 3.67 4.17 3.09 3.2 3.5 3.6 4 3.2 2.24
Bit Rate
(Kbps) 3.2 6.4 12.8 25.6 6.82 4.8 7.95 5.3 16 4 2.4

6. CONCLUSIONS

CS based compression method to reduce the footprint of USS
systems is proposed, which exploits the fact that speech sig-
nal can have a sparse representation for a suitable selection of
dictionary. Sparse vector derived from speech signal has only
a few significant coefficients and speech reconstructed using
those significant coefficients is of good quality. It is observed
that behavior of the sparse vector for different speech regions
(voiced, unvoiced and transition) is different so varying num-
ber of significant coefficients of sparse vector are used to re-
construct different speech regions, which further reduces the
storage space without degrading the perceivable speech qual-
ity. The experimental observations validate that the proposed
compression method preserves lower order formants informa-
tion and reconstructed speech is better in terms of perceptual
quality as compared to the compression methods used in Flite.
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