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Fabian-Robert Stöter, Nils Werner, Stefan Bayer, and Bernd Edler

International Audio Laboratories Erlangen∗

Am Wolfsmantel 33, 91058 Erlangen, Germany

ABSTRACT
Algorithms for estimating the fundamental frequency (F0) of
a signal vary in stability and accuracy. We propose a method
which iteratively improves the estimates of such algorithms
by applying in each step a time warp on the input signal based
on the previously estimated fundamental frequency. This time
warp is designed to lead to a nearly constant F0. A refine-
ment is then calculated through inverse time warping of the
result of an F0 estimation applied to the warped signal. The
proposed refinement algorithm is not limited to specific esti-
mators or optimized for specific input signal characteristics.
The method is evaluated on synthetic audio signals as well as
speech recordings and polyphonic music recordings. Results
indicate a significant improvement on accuracy when using
the proposed refinement in combination with several well-
known F0 estimators.

Index Terms— Fundamental frequency estimation, pitch
tracking, pitch estimation, time warping

1. INTRODUCTION

An estimate of the fundamental frequency F0 of a signal is
required in various applications of audio and speech signal
processing. F0 is often synonymously referred to as pitch
which is a perceptual measure. In the past, a number of algo-
rithms were presented to provide such estimates, with many
of them being designed for specific applications. Some sce-
narios are targeted to extract the fundamental frequency of the
predominant source [1] in a mixture of other sources. In other
applications, algorithms are used to extract fundamental fre-
quencies of multiple sources simultaneously present in a sig-
nal [2]. However, the most common scenario in many works
is to extract the fundamental frequency of a monophonic and
harmonic audio signal containing speech or music [3–9].

The development of novel methods for fundamental fre-
quency estimation, performing as well as earlier methods,
such as the popular correlation based YIN algorithm [5], has
proven challenging. In a recent study [10] it is stated that
YIN still clearly performs best in terms of accuracy. Never-
theless, when using YIN or other block based algorithms, a
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frame length and a hop size have to be selected trading tem-
poral resolution on one side against frequency accuracy and
robustness on the other side.

Especially when the signal is polyphonic, the robustness
is the most crucial aspect of a pitch estimator. In recent work
from Mauch et al. [11], the robustness of the YIN algorithm
is improved by probabilistic post-processing. However, be-
sides robustness, there is a variety of use cases requiring high
accuracy as well as high temporal resolution. Application
in parametric audio coding [12] requires the parameteriza-
tion of pitch bends and vibratos. Furthermore, source separa-
tion algorithms aiming at the extraction of harmonic sources
from the mixture can make use of an instantaneous F0 es-
timate [13, 14]. There are already contributions addressing
the improvement of accuracy of F0 estimates such as [15]
which introduced a non-integer similarity model or [9] which
belongs to the group of parametric pitch estimators.

We propose to improve the output of already existing al-
gorithms in terms of temporal resolution as well as accuracy
by iterative time warping. Two other contributions already
make use of time warping in the context of pitch estimation.
Resch et al. [6] proposed an instantaneous pitch estimation
technique which optimizes a warping function that would lead
to a constant pitch signal. Their optimization framework min-
imizes a cost function specifically targeted for speech signals.
Azarov et al. have introduced an improved version of RAPT
(called iRAPT1 and iRAPT2) which also uses time warping
to some extent [16] but misses an additional step as will be
shown in Section 2.2.2. Our main contribution is a time warp-
ing based refinement method that is applicable to any F0 esti-
mate. Our method emphasizes the strengths of different esti-
mators and thus can even help to improve their robustness. In
the following, we will describe the refinement method (Sec-
tion 2) and show the experimental evaluation and its results
(Section 3).

2. REFINED F0 ESTIMATION

Depending on the algorithm and application, there are sev-
eral reasons why F0 estimators deliver a less than ideal per-
formance. When the signal tested is not tonal — like in un-
voiced parts of speech — a proper estimation is impossible. If
the estimator is optimized on purely harmonic signals, inhar-
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monicity or frequency jitter of the input signal will increase
the estimation error. Many of these reasons will lead to er-
rors on the coarse level of the estimate (like octave jumps).
The fine level accuracy is mostly influenced by parameters
like time and/or frequency resolution of the estimator. A sig-
nal containing rapid changes of the frequency or modulations
like “vibrato” is therefore more affected regarding fine level
error. To obtain a more accurate estimate, we propose to time
warp the signal by using the coarse level estimate towards a
more constant pitch. The underlying assumption here is that
pitch estimators generally perform better the more constant
the pitch is. In this section, we formulate the mathematical
background of the time warping and present our proposed
method for obtaining a refined F0 estimate.

2.1. Initial F0 estimate

The first step is to calculate an initial F0 estimate by using
an existing pitch estimator. Note that we later require the es-
timate to be defined for every input sample, thus F [n] may
require interpolation. In our pipeline, we use linear interpo-
lation for all estimators. F0 estimators, like YIN [5], also
provide a measure of confidence c[n].

2.2. Time warping and refinement

In this step, we apply time warping which refers to a strictly
monotonous mapping of the natural or linear time scale t to a
warped time scale τ via a mapping function τ = w(t). The
mapping between the two domains for the continuous time
case then is:

x̆(τ) = x(w−1(τ)), x(t) = x̆(w(t)) (1)

where x(t) is the linear-time signal and x̆(τ) is the warped-
time signal. For the discrete time case, the signals in both
linear-time and warped-time domains are sampled using a
constant sample interval T . With sample indices ν and n for
the warped-time domain and linear time-domain respectively,
the warping is performed by

x̆[ν] = x(σ[ν]) with σ[ν] = w−1(νT ), (2)

and the inverse warping by

x[n] = x̆(s[n]) with s[n] = w(nT ). (3)

2.2.1. Warp contour

In our application, the warp map w(t) is constructed in such a
way that the instantaneous changes in frequency of the signal
in the linear time domain are minimized in the warped time
domain. For this, we derive the map from an estimate of the
fundamental frequency F0.

For processing, the actual information needed is not the
absolute instantaneous fundamental frequency but only its
change over time. This means that the warping contour can
be derived from an algorithm which may differ from the
actual F0 estimator.

The discrete time warp map w[n] is the scaled sum of the
relative frequency contour (the warp contour) W [n]:

w[n] = N

∑n
l=0W [l]∑N−1
k=0 W [k]

0 ≤ n < N, (4)

where N being the number of samples of the signal under
consideration. As stated above the full warp map w(t) is then
obtained by linearly interpolating w[n]. From the require-
ments for the mapping function it follows that W [n] has to
be greater than zero for all n. In the case of a perfect F0
estimate, the signal warped with the resulting contour would
have a constant F0 equal to the average W̄ .

In the scope of this work, the warping is applied globally
over the full length of the signals under consideration. An
optional confidence measure c[n] can be incorporated for a
processed version of the warping contour. This ensures that
the warp contour has no discontinuities that result in addi-
tional artifacts after re-sampling. If the estimator does not
provide such a measure, a separate voiced/unvoiced detection
algorithm can be used. To obtain a warp contour W [n] from
an F0 estimate we propose the following steps: (A) initialize
the warp contour with F0 estimate W = F , (B) find con-
tour segments with high confidence, i.e. c[n] exceeds a given
threshold, (C) linearly connect the high confidence contour
segments and (D) set start and end of warp contour to a con-
stant value if confidence is below threshold. That way warp-
ing according to F0 is applied in the regions of high confi-
dence without significantly affecting the gaps in-between.

2.2.2. Obtaining a refined estimate

To improve the accuracy of the F0 estimate, time warping is
applied to the input signal x[n] based on W . The input signal
is 128-times oversampled using sinc based interpolation fil-
ters. From x̆[n] a new F0 estimate F̆1[ν] is being calculated
as in step (A). The first step therefore is similar to [6]. Ad-
ditionally, a warped confidence measure c̆1[ν] can be used to
convert F̆1[ν] into a warped warp contour W̆1[ν]. It is possi-
ble to linearly add F̆1[ν] to the first estimate for refinement,
as it is done in [16]. However for linear sweeps, the warped
estimate is shifted in time. Thus an error is introduced which
is even more distinct if the first F0 estimate is error prone.
We therefore propose a method to reduce this error:

• Inverse time warping is applied to F̆1[ν] based on the orig-
inal warp contour W resulting in F1[n].

• A refined F0 estimate after one iteration is then calculated
by F r

1 [n] = F1[n] ·W [n]/W̄ assuming that the warp con-
tour is initialized as in step (A) above.
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Fig. 1. F0 refinement for one excerpt of synthesized speech
using YIN [5] with 10 iterations. Left: Estimated F0 in linear
time. Right: estimates after each warping iteration in warped
time.

• The refinement can be repeated k times to obtain a better
estimate. To avoid accumulating errors introduced by the
re-sampling based warping, more iterations benefit from
calculating a refined warp contour/warp map instead of
doing a nested warping on the input signal. The map is ob-
tained by inverse time warping of the warp contour W̆1[ν]
resulting in W1[n]. A refined warp contour W r

1 [n] is then
obtained in the same way as the refined F0 estimate is cal-
culated. For the calculation of the kth step, time warping
is based on the W r

k−1[n] refined warp contour.
An example of the proposed refinement is depicted in Fig-
ure 1. The final refined estimate is closer to the reference
than the F0 estimator without refinement. It also shows (right
plot) how much “flatter” the F0 contour becomes after each
iteration. Note that compared to [6], our method does not
use a complex optimisation scheme but relies on the perfor-
mance of the pitch estimator in successive iterations. Hence
our “black box” like post processing simplifies the procedure
such that it can be applied to any pitch estimator. That way
the selection of a pitch estimator which best fits to the signal
type can be seen as an optimisation.

3. EXPERIMENTS AND EVALUATION

3.1. Estimators

For the evaluation of the proposed F0 refinement, we test the
refinement algorithm with the following F0 estimators:
YIN [5] is used as an FFT based implementation [17]. The
confidence measure is thresholded for values lower than 0.6
on the speech recordings. iRAPT1,2 [16] are improved ver-
sions of the RAPT framework. We use the author’s MAT-
LAB implementation of the iRAPT1 and iRAPT2 algorithms.
iRAPT2 is a refinement method that is comparable to our
proposed method. To evaluate the results, we apply our re-
finement to iRAPT1 and compare it with the refinement pro-
duced by iRAPT2. c[n] < 0.7 is used for thresholding speech
recordings. MELODIA [1] is not designed to be an F0 es-
timator but is able to extract the predominant melody in a
polyphonic mixture. We increase the bin resolution to 0.5

semitones, to increase the accuracy. We used the ESSEN-
TIA implementation. For thresholding we use the built-in
voiced/unvoiced detection. For YIN and MELODIA, we eval-
uate on a frame length of 64 ms and a hop size of 16 ms. For
iRAPT1 and iRAPT2 we use the fixed frame length parame-
ters of the author’s implementation.

3.2. Evaluation

We use the established evaluation measures GROSS PITCH
ERROR (GPE) and MEAN FINE PITCH ERROR (MFPE) [16].
We focus on MFPE in our results, measuring the absolute de-
viation of F0true and the F0 estimate per sample. As men-
tioned in [6], evaluating the accuracy of F0 estimates is chal-
lenging because of the lack of ground truth datasets anno-
tated on a time scale with such a high resolution. Most of
the available audio test data sets are not suitable because the
F0 annotation is only available with low time resolutions. By
using such a dataset there is a risk that the refined F0 esti-
mate is higher in MFPE. This is because the refined estimates
show more of the fine structure deviating from the coarse an-
notation which then is considered as piecewise constant. To
address this issue, we first present the evaluation results on
synthetic data. To verify our synthetic results, we present the
results of speech data annotated on 10 ms frames derived from
laryngograph signals. We did only evaluate and process the
voiced parts of the signals as indicated in the provided anno-
tation labels. Also note that since we focus on the MFPE, all
segments where one of the estimators results in a GPE> 0 are
excluded from the results, hence the GPE for all of our results
is 0. The proposed refinement has been processed with one
iteration (k = 1). Experiments showed that more iterations
only marginally improve the results.

3.2.1. Oracle Refinement

Since the proposed refinement algorithm repeatedly applies
pitch estimation, the performance of these estimators on the
time warped (nearly constant) signal is of interest. Therefore
we included the results of an oracle refinement where the first
estimate is set to a ground truth pitch. Additionally this also
does reveal information about the quality of the ground truth
annotation itself.

3.2.2. Synthetic Data

To generate synthetic test data we use pitch label annotations
of the PTDB-TUG speech data set [18]. We synthesize the
melody or voice using a simple sinusoidal signal model. To
get accurate ground truth data, the pitch annotations were up-
sampled to audio rate by using linear interpolation for the
PTDB-TUG. Similar to [11], we then synthesized the data
using cosine based oscillators adding 10 harmonics to each
signal output. The test set has been rendered at 16 kHz. The
complete PTDB-TUG set results in almost 10 hours of in-
put signal data. We present the results of the synthetic data
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Fig. 2. Results from the synthesized PTDB-TUG dataset.
MFPE grouped by estimator. Solid/dotted lines represent me-
dians/means. Outliers are not shown.

as box plots in Figure 2 grouped by estimator. It shows that
all estimators benefit from the refinement in terms of MFPE.
The iRAPT1 estimator shows the best improvement of 68%
in MFPE. As expected, the Oracle Refinement is almost at 0
MFPE.

3.2.3. Speech Data

For the results of the algorithm on real data we first used the
same PTDB-TUG items as in the synthetic data but processed
the accompanying speech recordings. The MFPE values were
then calculated by averaging the sample wise F0 estimates
from our proposed method over frame lengths of 10 ms to
match the annotation data. The results are shown in Figure 3.
The mean values indicate that the MELODIA algorithm per-
forms best overall. We can see that the refinement does not
show a clear effect on the iRAPT estimator. The oracle refine-
ment results indicate that even if a ground truth is known, the
refinement based on the warped (constant) signal can not get
much lower in MFPE. As also seen on synthetic data, iRAPT2
does not show any significant improvements compared to our
proposed refinements.

3.2.4. Polyphonic Mixtures

Pitch estimation of polyphonic mixture input signals in gen-
eral is known to be more difficult than on monophonic signals.
To show that our proposed refinement is not bound to the opti-
misation on specific signals we processed the MedleyDB [19]
which consists of 108 professionally recorded music mixes
where the main melody has been annotated by humans. We
only evaluate the MELODIA [20] estimator in this scenario.
Frame lengths and hop sizes were increased to 92 ms and
23 ms, respectively. The set is processed at 44.1 kHz. To fur-
ther back up the results of the fine pitch error in this scenario,
we additionally evaluated the results of a correlation based
measure as introduced in [6] (See Equation (19)). Instead
of computing the correlation coefficients on the mixture, we
used the accompanying multi-tracks. The track which most
predominantly contributed to the main melody has been cho-
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Fig. 3. Results from the real recordings PTDB-TUG dataset.
MFPE grouped by estimator. Solid/dotted lines represent me-
dians/means. Outliers are not shown.
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Fig. 4. Results from the real recordings MedleyDB dataset.
MFPE and Correlation Coefficient grouped by estimator.
Solid/dotted lines represent medians/means. Outliers are not
shown.

sen for the correlation coefficient measure. The results of the
experiment are shown in Figure 4.

3.2.5. Statistical Analysis

To test whether the refinements show statistical significance,
paired Wilcoxon signed-rank tests for each of the estimators
have been calculated. The test results in Table 1 show if there
is a statistically significant (α = 0.05) difference between the
refined and unrefined groups on the voiced segments. For
synthetic data as well as for speech, YIN and MELODIA
show statistically significant improvements. However, the ef-
fect size r on speech is lower than for synthetic data. The
results for the MedleyDB are significant both in MFPE and
correlation coefficient.

4. CONCLUSION

In this work we presented a method to improve the accuracy
of F0 estimators. The proposed method uses time warping
iteratively based on an initial F0 estimate. Therefore the im-
plementation can be applied to any F0 estimator. We showed
that by inverse time warping of a derived warp contour, an
improved estimate is constructed. The algorithm is evaluated
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Estimator Measure T p r

PTDB-TUG (synthetic) n = 11487
YIN MFPE 55466 .000 0.998
iRAPT1 MFPE 13831 .000 1.000
MELODIA MFPE 12349 .000 1.000

PTDB-TUG (speech) n = 9271
YIN MFPE 13082927 .000 0.391
iRAPT1 MFPE 21144487 .186 0.016
MELODIA MFPE 20484251 .000 0.047

MedleyDB n = 1055
MELODIA MFPE 134380 .000 0.517
MELODIA Correlation 124390 .000 0.553

Table 1. Result of Wilcoxon signed-rank test T , p and effect
sizes r.

on synthesized as well as real recordings. We compared our
proposed refinement with an improved version of the RAPT
framework and showed that the proposed refinements result in
an improvement of up to 68% on synthetic data and 14% on
speech in terms of the MFPE measure. The proposed method
does also work on polyphonic signals without further optimi-
sations. In future work, combinations of different F0 esti-
mators in each step could be used to better balance the trade-
off between robustness and accuracy per application and sce-
nario.
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[1] J. Salamon and E. Gómez, “Melody Extraction From
Polyphonic Music Signals Using Pitch Contour Char-
acteristics,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, no. 6, pp. 1759–1770,
Aug 2012.

[2] A. P. Klapuri, “Multiple Fundamental Frequency Es-
timation Based on Harmonicity and Spectral Smooth-
ness,” IEEE Transactions on Speech and Audio Pro-
cessing, vol. 11, no. 6, pp. 804–816, 2003.

[3] D. Talkin, “A Robust Algorithm for Pitch Tracking
(RAPT),” in Speech Coding & Synthesis, W.B. Klejn
and K.K. Paliwal, Eds., pp. 495–518. Elsevier, 1995.

[4] P. Boersma, “Praat, a System for Doing Phonetics by
Computer,” Glot international, vol. 5, no. 9/10, pp.
341–345, 2001.
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