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ABSTRACT

The parametric array loudspeaker (PAL) is well known for
its ability to radiate a narrow sound beam from a relatively
small ultrasonic emitter. Nonlinear distortions commonly oc-
cur in the self-demodulated sound of the PAL. Based on the
Volterra filter modeling the self-demodulation process of the
PAL, a linearization system can be developed for the PAL.
However, the computational complexity of the Volterra filter
increases dramatically with the tap length. In this paper, the
parallel cascade structure is adopted to implement the Volterra
filter. The experiment results demonstrate that the computa-
tional complexity of the Volterra filter is significantly reduced
by using the parallel cascade structure, and based on such an
implementation of the Volterra filter, the performance of the
linearization system is not compromised.

Index Terms— Volterra filter, Parallel cascade structure,
Parametric array loudspeaker, Nonlinear distortion

1. INTRODUCTION

Recently, the parametric array loudspeaker (PAL) has been
widely studied as a novel type of sound reproduction device
in a variety of applications where the directional sound is
preferred [1]. For example, a pair of PALs have been em-
ployed in the active noise control to create individual quite
zones near of the left and right ears of a person [2]. The PALs
have also been examined for the three-dimensional audio re-
production [3,4]. However, the sound quality of the PAL
is not satisfactory due to the nonlinear distortion, which is
by-produced by the self-demodulation process. Hence, there
have been many preprocessing methods derived based on the
modulation technique to reduce the nonlinear distortion [5,6].
But the actual performance of a preprocessing method is of-
ten limited by the discrepancy between the real environments
and the theoretical assumptions made in the derivation of the
preprocessing method.

Therefore, the linearization method based on the Volterra
filter identification is more favorable [7-11]. This is because
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that the Volterra filter that models the self-demodulation pro-
cess of the PAL is able to adapt to different environments. The
earliest work on such a linearization method can be traced
back to 2002 [7]. The major difficulty in practice is that
the computational complexity of the Volterra filter increases
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dramatically with the tap length [8,9]. One of the existing
solutions is to adopt the one dimensional Volterra filter that
keeps only the diagonal elements of the 2nd—order Volterra
kernel [10]. It leads to significant reduction of the computa-
tional complexity, but sacrifices the ability to compensate for
the intermodulation distortion. In another recent work, the
sparse normalized least mean squares (NLMS) algorithm has
been used in the identification of the Volterra filter [11]. But
it is found that the sparsity in the 2nd—order Volterra kernel
may be trivial. Therefore, the Volterra filter is proposed to be
implemented using the parallel cascade structure in this pa-
per. The parallel cascade structure explores the factorization
of the 2nd—order Volterra kernel to reduce the computational
complexity of the Volterra filter [12]. The effectiveness of the
parallel cascade structure is validated through the comparison
with the conventional implementation of the Volterra filter, in
terms of the compensation amount of the 2nd—order nonlinear
distortion in the PAL.

2. PARAMETRIC ARRAY LOUDSPEAKER

When the amplitude of a sound wave is sufficiently small, the
linear acoustic model is generally accurate and concise. How-
ever, when the amplitude of a sound wave is large, the non-
linear acoustic effects become noticeable. In this case, the
sound wave is referred to as the finite amplitude wave. When
two finite amplitude waves at close frequencies are radiated
in the same direction, intermodulation frequencies, such as
the sum and difference frequencies, are generated along with
other harmonics. The intermodulation frequency waves travel
in a similarly narrow beam as the finite amplitude waves. In
the PAL, the finite amplitude waves are radiated in the ultra-
sonic frequency range, and the difference frequency is pro-
duced in the audible range of human beings. Therefore, the
sound beam of the PAL is much narrower than the conven-
tional sound devices with the same emitter size.

Figures 1 and 2 show the block diagram and picture of
the PAL, respectively. The audible sound input is modulated
on an ultrasonic carrier so that the waveform of the audible
sound input is embedded in the sideband of the modulated
signal. After the modulated signal is radiated into air, the
waveform of the audible sound input is cumulatively recov-
ered from the interaction between the sideband frequencies
and the carrier frequency. This phenomenon is known as the
self-demodulation process. The sound reproduced by the PAL
is thus referred to as the self-demodulated sound.

3. LINEARIZATION SYSTEM BASED ON
THE VOLTERRA FILTER

3.1. Volterra Filter

Nonlinear systems with memory are able to be modeled using
Volterra filters [13]. When the Volterra filter is utilized to
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model the nonlinear response of the PAL, it is allowed to be
truncated at the 2nd—order and use a finite memory length
of N to balance between the computational complexity and
model accuracy. Hence, the nonlinear response of the PAL is
given by

Tl*kl)

HMZ

1 N—
Z kl,kQ n—kl)x(n—kg), (l)

HM

where z(n) and y(n) are the discrete input and output signals
in the audible frequency range; h, and ho are the coefficients
of the 1st—order and 2nd—order Volterra kernels, respectively.

3.2. Nonlinear System Identification

A nonlinear system identification approach to determine the
coefficients of the Volterra kernels is provided by the fre-
quency response method [14]. The coefficients of the Volterra
kernels are computed from the inverse Fourier transform of
the frequency responses obtained in measurements. Firstly,
a sine sweep signal is applied to the nonlinear system to be
identified. The frequency response of the 1st—order Volterra
kernel is obtained from the ratio of the output spectrum Y (w)
and the input spectrum X (w), which is given by

Hy(w) = - 2

Secondly, two sine sweep signals are applied to the nonlin-

ear system to obtain the frequency response of the 2nd—order

Volterra kernel, which is determined by dividing the output

spectrum Y (w1 +ws) by the input spectra X (wq) and X (w-),
ie.

~ Y(wl + UJQ) N

H , =" 3

2(w1, w2) X (w1)X (w2) o (3)

where a denotes the number of symmetries in the frequency
response of the 2nd—order Volterra kernel.

If the nonlinear system to be identified contains only the
2nd-order nonlinearity, the frequency response method is
able to obtain the 2nd—order Volterra kernel accurately. How-
ever, in practice, the nonlinear system usually contains more
than 2nd—order nonlinearity. Therefore, intermodulation fre-
quencies resultant from higher-order nonlinearity overlap in
the output spectrum Y (w1 + wa). This introduces errors in
the identified 2nd—order Volterra kernel. Based on our past
experience, the errors introduced by higher-order nonlinearity
is likely to be tolerable in the identification of the 2nd—order
Volterra kernel of the PAL.
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3.3. Linearization System Design

The block diagram of the linearization system compensating
for the 2nd—order nonlinear distortion of the PAL is shown in
Fig. 3. In this linearization system, H, (21, 22) is the identified
2nd-order Volterra kernel and H; '(z) is the linear inverse
filter that fulfills the following condition:

Hi(z) Hy'(2) =22 4)

The 2nd-order nonlinear output of the PAL after the lin-
earization system consists of two terms. The first term is
provided by the combination of the 1st—order path of the lin-
earization system and the 2nd—order nonlinear response of the
PAL. The second term is resultant from the combination of the
2nd-order path of the linearization system and the linear re-
sponse of the PAL. Therefore, the 2nd—order nonlinear output
of the overall system is written as

28 Ho (21, 22) — Ho(z1, 20)Hy ' (2) Hy (2)
= ziAHg(Zl, 22) — HQ(Zl, Zg)ZiA

= 272 Ha(21, 22) — Ha(21,22)}- (5)

If there is no discrepancy between the actual 2nd—order
nonlinear response of the PAL and the identified 2nd—order
Volterra kernel, i.e. ﬁg(zl, z9) = Ha(z1, z3), the 2nd—order
nonlinear distortion of the PAL should be completely elimi-
nated by the linearization system.

3.4. Parallel Cascade Volterra Filter

According to the parallel cascade structure of the Volterra fil-
ter [12], the 2nd—order nonlinear component in (1) is rewritten
in a matrix form as

N—-1N-1

yz(n) = Z Z hg(lﬁ, kg)x(n — k:1)x(n — kz)

k1 =0 k2=0
= X"(n)HyX(n), (6)
where X(n) = [z(n), z(n—1), ..., 2a(n—N+1)] is

the input signal vector; and H is the matrix form of the 2nd—
order Volterra kernel, i.e.

h2(0,0)
h2(0,1)

h2(1,0)
h2(1,1)

ha(N —1,0)
hao(N —1,1)
H, =

ha(0,N — 1) ho(1,N — 1) ha(N —1,N — 1)

(N

Without loss of generality, H is assumed to be a symmet-
ric Volterra kernel. It can be decomposed as

N-1

Hy = ) ALL], ®)
=0
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Fig. 3. Block diagram of the linearization system.
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Fig. 4. Parallel cascade structure of the 2nd—order Volterra
filter.

where ), is ¢th eigenvalue and L; is ith eigenvector given by

Li=[1lo L1 1" ©)

Substituting (8) to (6) yields the parallel cascade expres-
sion of the 2nd—order nonlinear component:

lin=1

ya(n) = > Mi[X(n) LJ[L{ X (n)]
=0

=Y Nyt (), (10)

where y1, ;(n) = XT(n)L; = LT
allel path.

Based on (10), the parallel cascade structure of the 2nd—
order Volterra filter is shown in Fig. 4. The advantage of the
parallel cascade structure over the conventional implementa-
tion of the Volterra filter is that the computational complexity
of using the parallel cascade structure is controllable by com-
puting only the significant eigenvalues. The computational

X (n) provides the ith par-
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Fig. 5. Identified 1st—order and 2nd—order Volterra kernels.

complexity of the conventional implementation of 2nd—order
Volterra filter is given by N? + N, while the computational
complexity of using the parallel cascade structure is reduced
to

(N4+2)(N—-p)=N?>—-N(p-2)—2p, (11

where p is the number of the discarded trivial eigenvalues.
The computational complexity and the model accuracy can be
well balanced by choosing the threshold of the eigenvalues.

4. EXPERIMENT RESULTS

Experiments were carried out to compare the linearization
systems of the PAL implemented conventionally and using
the parallel cascade structure. The PAL was placed 2.0 m
from the microphone. The sampling frequency was set at
8000 Hz. The sine sweeps were generated from 500 Hz to
2000 Hz for the frequency response method that determines
the 1st—order and 2nd—order Volterra kernels. The tap length
of the Ist—order Volterra kernel was 512 and the dimension of
the 2nd—order Volterra kernel was 512 x 512.

The identified Volterra kernels were plotted in Fig. 5. It
is found that there are plenty of trivial coefficients in the 1st—
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Fig. 7. Compensation results.

order and 2nd—order Volterra kernels, which can be taken ad-
vantage of to reduce the computational complexity. It is also
observed that the one dimensional Volterra filter may lead to
compromised performance, since the significant coefficients
are distributed on a cross instead of the diagonal.

Figure 6 shows the eigenvalues of the identified 2nd—order
Volterra kernel. The significant eigenvalues only occur in
the first 20 numbers. Hence, the number of discarded triv-
ial eigenvalues is set to 410 and 499 in turn for comparison.
When p = 499, the remaining eigenvalues for computing
the 2nd—order nonlinear component is only 13, which is less
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Table 1. Average of compensation amount.

PCVF PCVF
Kind of distortions VF (p=410) (p =499)
Harmonic distortion ~ 21.71dB  18.61 dB 8.83 dB
Sum frequency 18.28dB  21.10dB 9.10dB
Difference frequency 19.99dB  18.61 dB 5.12dB

than the number of significant eigenvalues observed in Fig. 6.
Therefore, compromised performance is expected for this ex-
treme setting.

The 2nd-order harmonic distortion and intermodulation
distortion were measured before and after the linearization
systems. The input signal of the PAL consists of a sine sweep
from 500 Hz to 2000 Hz and a fixed sine tone at 500 Hz. The
experiment results were plotted in Fig. 7. In Fig. 7(d), the
distortion curves before the linearization system have differ-
ent frequency ranges, which is due to the use of a fixed band-
pass filter ranging from 500 Hz to 2000 Hz. This limitation
of measurement equipment is also reflected on the frequency
ranges in Figs. 7(a)-(c).

For simplicity, the linearization systems based on the con-
ventional Volterra filter and parallel cascade structure are re-
ferred to as the VF and PCVF, respectively. The average com-
pensation amounts are listed in Table 1. When p = 410,
the PCVF achieves equivalent performance as the VF and the
computational complexity is reduced by almost 80%. When
the extreme setting p = 499 is used, the computational com-
plexity is reduced by 97%. However, the compensation per-
formance is also scarified since some significant eigenvalues
are not computed. Moreover, the VF, PCVF (p = 401), and
PCVF (p = 499) take 101 s, 40 s, and 8 s to run on an Intel
Core 17 3.10 GHz processor.

5. CONCLUSION

In this paper, the parallel cascade structure has been adopted
to implement the 2nd—order Volterra filter in the linearization
system of the PAL. The computational complexity is remark-
ably reduced by using the parallel cascade structure, while
the compensation performance in terms of the reduction of
the 2nd—order harmonic distortion and intermodulation dis-
tortion is not compromised. Therefore, the parallel cascade
structure is highly recommended for the Volterra filter based
linearization system of the PAL, whereby the real-time imple-
mentation is possible to be carried out.
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