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ABSTRACT

The problem of active control of narrowband acoustic noise

is considered. It is shown that the proposed earlier feed-

back control algorithm called SONIC (self-optimizing nar-

rowband interference canceller), based on minimization of

the L2-norm performance measure, can be re-derived using

the L1 approach. The resulting robust SONIC algorithm is

more robust to heavy-tailed measurement noise, such as the

α-stable noise, than the original SONIC.

Index Terms— active noise control, adaptive filtering

1. INTRODUCTION

Active control of acoustic noise is a long-standing problem,

which has been studied for more than 30 years [1]–[4] and

found its way to many challenging applications, such as atten-

uation of low-frequency noise in heating, ventilation and air-

conditioning (HVAC) systems [5]–[6], active headsets [7]–[8]

and systems that provide quiet zones in cars, trains, planes etc.

[9]–[13] – see [14] for more examples of successful applica-

tion of this technique.

Active noise control (ANC) is achieved by means of gen-

erating an “antinoise” – when two acoustic waves with the

same amplitude but opposite polarity meet at a certain point

in space, the sound is locally cancelled due to phenomenon

known as destructive interference. ANC systems usually op-

erate in the low frequency range (typically up to 500 Hz),

i.e., in the range where passive approach to unwanted sound

attenuation (sound absorbers, acoustic barriers) is hardly ap-

plicable for technical and/or economic reasons.

ANC systems are usually divided into feedforward sche-

mes, which in addition to the error signal (measured at the

system output), incorporate the so-called reference signal

(measured by the sensor placed close to the source of un-

wanted sound), and feedback schemes that rely exclusively

on the error signal.

Feedforward systems, which are capable of suppressing

both narrowband and broadband noise, are usually controlled
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by the filtered-x least mean squares (FxLMS) algorithms or

their modifications [1]–[4].

In the case of feedback systems, which can deal only with

the narrowband noise, the most popular solutions are those

based on the internal model principle [15], [16], phase-locked

loop control [17], [18] and self-tuning regulation [19]–[21].

In this paper we will focus on the self-optimizing narrow-

band interference cancelling (SONIC) algorithm proposed in

[19], capable of reducing nonstationary harmonic noise un-

der plant (secondary path) uncertainties. We will show that

SONIC, which was originally based on minimization of the

quadratic performance measure, can be re-derived using the

L1-norm approach. The resulting algorithm is more robust to

heavy-tailed measurement noise than the original algorithm.

2. PROBLEM STATEMENT

Denote by t = . . . ,−1, 0, 1, . . . the normalized (dimension-

less) discrete time, and by q−1 the backward shift operator

q−1x(t) = x(t − 1). We will consider the problem of reduc-

tion of a nonstationary complex-valued narrowband interfer-

ence d(t), observed at the output of a linear stable plant with

unknown or partially unknown transfer function Kp(q
−1). In

acoustical applications such a plant is usually referred to as

a secondary path. We will assume that the open-loop system

description has the form (see Fig. 1)

y(t) = Kp(q
−1)u(t− 1) + d(t) + v(t) (1)

where y(t) denotes the complex-valued system output, u(t)
denotes the input (control) signal and v(t) is a wideband

measurement noise – zero-mean circular white sequence with

variance σ2
v . Furthermore, we will assume that the interfer-

ence signal d(t) obeys the following narrowband random-

walk model

d(t) = ejω0d(t− 1) + e(t) (2)

where ω0 ∈ [0, π) is a known angular frequency and e(t) de-

notes circular white noise, independent of v(t), with variance

σ2
e .

The only assumption that will be made about the unknown

plant is that it has nonzero gain at the frequency ω0: kp =
Kp(e

−jω0) 6= 0.
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Fig. 1: Block diagram of the noise cancellation system

3. SONIC CONTROLLER

Derivation of the SONIC controller, presented in [19], was

based on the steady-state system approximation. In order to

cancel a narrowband signal d(t), one should generate another

narrowband signal u(t), with the same frequency, which, af-

ter passing through the secondary path, will have the same

amplitude as d(t) but opposite polarity. Since linear systems

operated in the steady state basically scale and time-shift si-

nusoidal inputs, it approximately holds that Kp(q
−1)u(t) ∼=

kpu(t). Applying this approximation to (1), one obtains

y(t+ 1) ∼= kpu(t) + d(t+ 1) + v(t+ 1) (3)

which leads to the following “idealized” cancelling rule

u(t) = −d(t+ 1)

kp

based on the assumption that the disturbance signal is known

ahead of time. A more realistic control rule has the form

d̂(t+ 1|t) = ejω0 [d̂(t|t− 1) + µ0y(t)]

u(t) = − d̂(t+ 1|t)
kp

(4)

where d̂(t + 1|t) denotes the predicted value of d(t + 1) and

µ0 > 0 is a small real-valued adaptation gain. Under such a

control the cancelling error c(t) = d(t) − d̂(t|t − 1) can be

expressed in the form

c(t+ 1) = ejω0(1− µ0)c(t) + e(t+ 1)− µ0v(t) (5)

which allows one to search for the optimal value of µ0, e.g.

the value that minimizes the variance of c(t).

Interestingly, it can be shown that if the the true plant gain

kp is replaced in (4) by a nominal gain kn, different from

kp (β = kp/kn 6= 1), and at the same time the real-valued

adaptation gain µ0 is replaced by the complex-valued gain

µ = µ0/β, the resulting control algorithm

d̂(t+ 1|t) = ejω0 [d̂(t|t− 1) + µy(t)]

u(t) = − d̂(t+ 1|t)
kn

(6)

performs identically as (4). This can be seen by analyzing the

cancelling error c(t) = d(t)− βd̂(t|t− 1), which in the case

of using (6) has the form

c(t+ 1) = ejω0(1− βµ)c(t) + e(t+ 1)− βµv(t). (7)

Quite clearly, after setting µ = µ0/β, the error equation (7)

becomes identical with (5), which means that, in spite of

adopting the incorrect value of the plant gain, the system gov-

erned by (6) will achieve the same cancelling performance as

the system governed by (4).

Since in practice the value of β is not known, one can

adaptively search for such a value of µ which will not only

compensate the modeling error, but will also optimize the

closed-loop system performance. The solution proposed in

[19] is based on minimization of the local measure of fit, made

up of exponentially weighted “squares” of system outputs

V (t, µ) =

t∑

τ=1

ρt−τ |y(τ, µ)|2 (8)

where ρ, 0 < ρ < 1, denotes the forgetting constant which

determines the effective averaging range. The recursive

Newton-Raphson type algorithm for minimization of (8)

has the form

µ̂(t) = µ̂(t− 1)−
[
∂2V (t, µ̂(t− 1))

∂µ∂µ∗

]−1
∂V (t, µ̂(t− 1))

∂µ∗

(9)

where

∂

∂µ
=

[
∂

∂µR

− j
∂

∂µI

]
,

∂

∂µ∗
=

[
∂

∂µR

+ j
∂

∂µI

]

µR = Re[µ] , µI = Im[µ]

denote operations of symbolic differentiation with respect to

a complex variable, used in the so-called Wirtinger calculus,

applicable to nonanalytic functions, such as (8) – for details

see [22].

For the quadratic cost function (8), one arrives at the fol-

lowing control algorithm, further referred to as SONIC (self-

optimizing narrowband interference canceller) [19]

z(t) = ejωo

[
(1− cµ)z(t− 1)− cµ

y(t− 1)

µ̂(t− 1)

]

r(t) = ρr(t − 1) + |z(t)|2

µ̂(t) = µ̂(t− 1)− z∗(t)y(t)

r(t)

d̂(t+ 1|t) = ejωo [d̂(t|t− 1) + µ̂(t)y(t)]

u(t) = − d̂(t+ 1|t)
kn

(10)
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where z(t) = ∂y(t, µ̂(t− 1))/∂µ, r(t) = ∂2[V (t, µ̂(t− 1))]
/∂µ∂µ∗, and cµ > 0 denotes a small user-dependent con-

stant. We note that derivation of the sensitivity derivative z(t)
in a way that allows one to avoid its dependence on the un-

known modeling error β is rather tricky - for more details see

[19].

4. ROBUST SONIC

It is known that controllers based on minimization of L1-type

performance measures are more robust than their L2 counter-

parts, e.g. they are more resistant to impulsive noise. Fol-

lowing this general observation, we will replace the quadratic

cost function (8) with

V (t, µ) =

t∑

τ=1

ρt−τ |y(τ, µ)|. (11)

The algorithm that minimizes (11) will be further referred to

as robust SONIC. Similarly as before, the complex-valued

gain µ will be updated using the Newton-Raphson algorithm

(9). However, since the cost function (11) is convex but non-

differentiable at certain points, some derivatives will be re-

placed with their generalized versions called subderivatives.

Observe that

V (t, µ) = ρV (t− 1, µ) + |y(t, µ)|

and hence

∂V (t, µ)

∂µ∗
= ρ

∂V (t− 1, µ)

∂µ∗
+

∂|y(t, µ)|
∂µ∗

∂2V (t, µ)

∂µ∂µ∗
= ρ

∂2V (t− 1, µ)

∂µ∂µ∗
+

∂2|y(t, µ)|
∂µ∂µ∗

. (12)

Let

g(y) = |y| =
√
yy∗

where, for clarity reasons, the dependence of y on µ was sup-

pressed. Using the chain rule of Wirtinger calculus, one ob-

tains

∂g(µ)

∂µ∗
= ∇yg(y)

∂y

∂µ∗
+∇y∗g(y)

∂y∗

∂µ∗
(13)

where ∇y and ∇y∗ denote subderivatives with respect to y
and y∗, respectively. Combining (3) with (10), one arrives at

y(t) ∼= d(t)− βd̂(t|t− 1) + v(t)

and
∂y(t)

∂µ∗
= −β

∂d̂(t|t− 1)

∂µ∗
.

Since in Wirtinger calculus µ and µ∗ are treated as indepen-

dent variables, and d̂(t|t − 1) does not depend explicitly on

µ∗, it holds that ∂y/∂µ∗ = 0 and consequently the first term

on the right hand side of (13) is zero. To evaluate the second

term, note that
∇y∗g(y) =

y

2
√
yy∗

which leads to

∂|y|
∂µ∗

= f(y)
∂y∗

∂µ∗
, f(y) =

y

2|y| . (14)

When y = 0, the result of division by |y| is defined (here and

below) as 0.

In a similar way one can compute the second-order deriva-

tive

∂2|y|
∂µ∂µ∗

=
∂

∂µ

{
f(y)

[
∂y

∂µ

]
∗
}

=
∂f(y)

∂µ

[
∂y

∂µ

]
∗

. (15)

Note that

∂f(y)

∂µ
=

1

2|y|
∂y

∂µ
+

y

2

∂

∂µ

[
1

|y|

]
(16)

and (since ∂y∗/∂µ = 0)

∂

∂µ

[
1

|y|

]
= ∇y

[
1

|y|

]
∂y

∂µ
= − 1

2y|y|
∂y

∂µ
. (17)

Combining (15), (16) and (17), one arrives at

∂2|y|
∂µ∂µ∗

=
1

4|y|

∣∣∣∣
∂y

∂µ

∣∣∣∣
2

. (18)

Assuming that µ̂(t − 1) minimizes V (t − 1, µ), and that the

second-order derivative ∂2V (t− 1, µ)/∂µ∂µ∗ varies slowly

with µ, i.e.,

∂V (t− 1, µ̂(t− 1))

∂µ∗
= 0

∂2V (t− 1, µ̂(t− 1))

∂µ∂µ∗

∼= ∂2V (t− 1, µ̂(t− 2))

∂µ∂µ∗

one arrives at

∂V (t− 1, µ̂(t− 1))

∂µ∗
=

∂|y(t, µ̂(t− 1))|
∂µ∗

∂2V (t, µ̂(t− 1))

∂µ∂µ∗

∼= ρ
∂2V (t− 1, µ̂(t− 2))

∂µ∂µ∗

+
∂2|y(t, µ̂(t− 1))|

∂µ∂µ∗
. (19)

According to (9), (14), (15) and (19), the robust SONIC algo-

rithm can be expressed in the form

z(t) = ejωo

[
(1− cµ)z(t− 1)− cµ

y(t− 1)

µ̂(t− 1)

]

r(t) = ρr(t − 1) +
|z(t)|2
4|y(t)|

µ̂(t) = µ̂(t− 1)− z∗(t)y(t)

2r(t)|y(t)|
d̂(t+ 1|t) = ejωo [d̂(t|t− 1) + µ̂(t)y(t)]

u(t) = − d̂(t+ 1|t)
kn

. (20)
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Fig. 2: Impulse response of the plant used in all simulations.

5. COMPUTER SIMULATIONS

A special simulation experiment was designed to compare be-

havior of the original SONIC controller and its robust version

in the presence of heavy-tailed noise. The impulse response

of the simulated plant, shown in Fig. 2, was obtained from

a real-world identification experiment involving a 315 mm

HVAC duct (8 kHz sampling was used).

The simulated disturbance signal was generated as fol-

lows: d(t) = a(t)ejω0t, a(t) = 1 + 0.005 cos(2πt/16000),
where ω0 = π/20 (which corresponds to 200 Hz under 8 kHz

sampling).

The nominal plant gain was set to kn = 1.6986−0.4843i,
while the true steady state gain of the simulated secondary

path, measured at the frequency ω0, was equal to 1.9036 +
0.4776i. To guarantee fair comparison, the parameter ρ was

adjusted so as to equalize performance of both algorithms in

the presence of Gaussian distributed (σv = 0.01) measure-

ment noise; to reduce the number of degrees of freedom, the

parameter cµ was in both cases set to the same value equal

to 0.005. It was found that setting ρ to 0.9999 for the origi-

nal algorithm, and to 0.9999285 for the robust one, resulted

in only 0.5% difference in the corresponding mean squared

steady state cancellation errors. When the same values of

ρ = 0.9999 were used, the difference reached 11%.

To obtain statistically meaningful results, the cancellation

efficiency was determined using combined time and ensemble

averaging: 25 realizations of v(t) were used, each covering

80000 samples, i.e., 5 periods of the modulating signal a(t).
Time averaging was started at the instant 50000, after the sys-

tem has reached its steady state performance. The full adap-

tation mode was started at the instant 35000, after the quan-

tities r(t) in both algorithms stabilized their values. Finally,

to avoid the risk of erratic system behavior, both algorithms

were equipped with a “safety valve” – the upper allowable

value of |µ̂(t)| was set to 0.01.

The performance of both algorithms in the presence of a

heavy-tailed noise was checked using the symmetric α-stable

(SαS) distributed v(t).

0 200 400 600 800 1000
−1

0

1

α=1.5

0 200 400 600 800 1000
−0.5

0

0.5

α=1.7

0 200 400 600 800 1000
−0.05

0

0.05

α=2.0

t

Fig. 3: Realizations α-stable random processes obtained for

α ∈ {1.5, 1.7, 2.0}, β = 0, γ = 0 and δ = 1.

A probability distribution p is said to be stable if any linear

combination of two independent, p-distributed random vari-

ables has the same distribution, up to the scale and location

changes. Stable distributions are typically parametrized using

4 quantites: α, β, γ and δ. The quantities γ ∈ (−∞,∞) and

δ ∈ (0,∞) are called location and scale parameters, respec-

tively, and are “equivalents” of the mean and the variance of

the distribution (note that, in general, these two moments do

not exist for stable distributions). The other two parameters,

α ∈ (0, 2] and β ∈ [−1, 1], are called the stability param-

eter and the skewness parameter, respectively. Note that the

case α = 2 corresponds to Gaussian distribution. Fig. 3

shows three realizations α-stable random processes obtained

for β = 0, γ = 0, δ = 1 and three different values of α.

To prevent from excessive growth of the noise levels for

smaller values of α, a special normalization procedure was

employed. First, a non-normalized realization ru(t) of a SαS

process was generated using γ = 0, δ = 1, β = 0 and the

desired value of α. Second, a sample median m of |ru(t)| was

computed. Third, the normalized signal was obtained using

rn(t) =
0.01

1.48m
ru(t) .

In the Gaussian case the above procedure sets the standard

deviation of rn(t) to 0.01. To obtain both the real and the

imaginary part of a complex-valued measurement noise v(t),
generation of the normalized signal was performed twice. The

same starting value of the random number generator was used

for different values of α.

Fig. 4 shows the mean-squared steady state cancellation

errors yielded by the two compared algorithms for different

values of α. As α gets smaller, i.e., as the measurement noise

becomes more heavy-tailed, the modified algorithm performs

increasingly better than the original one. This confirms its

improved robustness.
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Fig. 4: Comparison of mean squared steady state cancellation

errors yielded by the original SONIC algorithm (crosses) and

robust SONIC (diamonds) for different values of α.

6. CONCLUSIONS

The problem of active feedback control of a nonstationary

harmonic noise, in the presence of a heavy-tailed measure-

ment noise, was considered. A new variant of the self-

optimizing narrowband interference canceller (SONIC) was

derived and checked using computer simulations. The new

control algorithm, based on minimization of the L1 perfor-

mance measure, shows increased robustness compared with

its previous, L2-norm based version.
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