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ABSTRACT

We developed a new feature extraction algorithm based on
the Amplitude Modulation Spectrum (AMS), which mainly
consists of two filter bank stages composed of low-order re-
cursive filters. The passband range of each filter was opti-
mized by using the Covariance Matrix Adaptation - Evolu-
tion Strategy (CMA-ES). The classification task was accom-
plished by a Linear Discriminant Analysis (LDA) classifier.
To evaluate the performance of the proposed acoustic scene
classifier based on AMS features, we tested it with the pub-
licly available dataset provided by the IEEE AASP Challenge
2013. Using only 9 optimized AMS features, we achieved
85 % classification accuracy, outperforming the best previ-
ously available approaches by 10 %.

Index Terms— evolutionary optimization, acoustic scene
classification, acoustic feature extraction, amplitude modula-
tion spectrum

1. INTRODUCTION

The goal of an acoustic scene classification system is to au-
tomatically assign sound signals to certain acoustic classes.
Such a system can, for example, be used in mobile phones
[1–3] to automatically match the acoustic notification profile
to the currently detected acoustic environment. For instance,
during a meeting the acoustic notification profile could switch
into silent mode. However, an acoustic scene classifier is not
only beneficial to mobile phones. Another application could
be in the field of mobile robotics, using acoustic information
in addition to vision. Also hearing aids [4–6] can benefit
from acoustic classifiers, e.g. to automatically adjust the
signal processing profile to the current acoustic scene. For
example, in a noisy environment the noise reduction can be
activated or, if speech is detected, the beamformer could be
switched on. In order to make such an approach applicable for
mobile battery-based low-power devices, the computational
complexity of the classification system must be minimized.
Properly chosen features are essential for a reliable and accu-
rate classification system. Many different audio features have
been developed that are computed either in the time or the
frequency domain [7]. Often, useful features are extracted by
feature selection techniques [8], resulting in a heterogeneous

collection of audio features and thus a more complicated
implementation. More recently, AMS based features, which
are inspired by the human auditory signal processing, gained
some prominence [9–12]. However, using a large number of
AMS features as suggested in [10] is not feasible in compu-
tationally limited scenarios.
In this paper, we propose a computationally efficient approach
to acoustic signal classification that makes use of amplitude
modulation spectrum features and an LDA classifier. As we
strive for a low number of features, we optimize our fea-
tures using the Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) [13]. Therefore, we extract a small and
homogeneous set of features, which is well suited for hard-
ware or software implementation with low resources and can
be easily adapted to different classification tasks.
In the next section of this paper, we introduce the AMS
feature extraction scheme and the CMA-ES optimization
method. In section 3, we test our acoustic scene classifier
with the IEEE AASP Challenge 2013 public dataset and
present our results. Section 4 concludes this paper with a
discussion of these results.

2. METHODS

2.1. Amplitude Modulation Spectrum Features

Choosing an adequate feature extraction procedure for a clas-
sification system is crucial and challenging. Since previous
research has revealed the importance of amplitude modula-
tions for recognition and processing of audio signals in human
auditory perception, our features are extracted on the basis of
AMS [11]. Anemüller et al. built a classifier based on AMS
features with a recognition rate of up to 90% for speech in
real acoustic backgrounds of non-speech sounds [9]. Moritz
et al. [12] and Bach et al. [10] also used AMS features for
speech detection in noisy environments and achieved simi-
lar results. The proposed algorithm in [9] employs two FFT
stages and extracts 493 features. This could however be de-
manding for battery-operated low-power digital signal pro-
cessors. Therefore, we introduce a less complex AMS algo-
rithm, which utilizes parametric filter banks instead of FFTs
and extracts only a small number of features. The parameters
of these filter banks are optimized using an evolutionary opti-
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mization method.
Figure 1a illustrates the structure of our feature extraction
procedure. It consists of two successive filter bank stages and
a final averaging stage. In the following, we describe the pro-
cessing of an input signal x(k) in more detail. First, the input
signal x(k) with lengthN passes through the time domain fil-
ter bank, which contains NTF parallel bandpass filters. The
first filter in this filter bank is a lowpass filter with the cut-
off frequency fu1. The cutoff frequency fu1 of the first filter
is the lower edge frequency fl2 of the second bandpass filter
and so on. The upper edge frequency of the last filter is set
to 10000 Hz. The output YTF of this stage is an NTF ×NR
matrix with NR = bNR c, where R is a decimation factor and
b·c is the floor operation. The inner structure of the time do-
main filter bank stage is depicted in Figure 1b. First, a high-
pass filter with a cutoff frequency of 25 Hz removes any DC
component from the input signal. The highpass filtered sig-
nal is fed into NTF parallel bandpass filters, which leads to
NTF subband signals xT,i(k) with different spectral content.
In the next steps the subband signals are rectified, lowpass
filtered and decimated. The lowpass filter is a fifth-order re-
cursive Chebyshev II filter with 30 dB attenuation in the stop-
band. The cutoff frequency fT,s is determined by the highest
bandpass filter upper edge frequency of the modulation filter
bank plus an additional 40 Hz. The lowpass filter prior to the
decimation avoids aliasing effects. The decimation factor is
given by R = b fs

2·fT,s
c, where fs is the sampling frequency.

The decimated subband signals xR,i(n) are then raised to the
power of ε1. The following logarithmic compression block is
optional and can be selected by Iγ ∈ {0, 1}. The last block of
the time domain filter bank stage is a simple smoothing filter
with the smoothing parameter α1. The last three blocks of
this stage can be summarized by

yR,i(n) = α1yR,i(n− 1) + (1− α1)γ ((xR,i(n))
ε1) (1)

with

γ(·) =

{
log10(·) if Iγ = 1

(·) if Iγ = 0 .
(2)

The final output signals yR,i = [yR,i(1) yR,i(2) . . . yR,i(NR)]

are arranged into a matrix YTF =
[
yTR,1 y

T
R,2 . . . y

T
R,NTF

]T
,

where each row corresponds to a certain frequency band. The
total number of tunable parameters in the time domain filter
bank stage equals NTF − 1 + 3.
Figure 1c shows the inner structure of the modulation filter-
bank stage. The output YTF of the time domain filter bank
stage (where each row corresponds to a certain frequency
band) is first fed row by row to NM parallel modulation fil-
ters. The modulation filters can be parameterized for each
frequency band individually, yielding an overall number of
NM × NTF filters. The ordering of the parallel bandpass
filters for each frequency is analog to the parallel band-
pass filter in the time domain stage as shown in Figure 2,

except the upper edge frequency of the last filter is not pre-
defined. The absolute values of the output signals x̂M,i(n)
with i ∈ {1, . . . NTF ,×NM} of the modulation filter bank
yields the corresponding envelope. The last three blocks of
the modulation filter bank stage are similar to those of the
time domain filter stage. Accordingly, the processing after
the modulation filters can be summarized by

yM,i(n) = α2yM,i(n− 1) + (1− α2)ν (|x̂M,i(n)|ε2) , (3)

where

ν(·) =

{
log10(·) if Iν = 1

(·) if Iν = 0 .
(4)

Again, the logarithmic compression is optional and can be
selected by the parameter Iν ∈ {0, 1}. The output of this
stage is a (NTF × NM ) × NR matrix YM. In a final step,
the amplitude modulation spectrum is obtained by averaging
over NR signal samples. The result is a feature vector YMF

with dimensions NTF ×NM .
Therefore, the total number of adjustable parameters equals
to NTF − 1 + 3 + (NTF ×NM ) + 3 = NTF · (NM + 1) + 5.
The CMA-ES tunes these parameters and determines the most
proper filter structure, e.g. if expansions and/or compressions
should be applied.

YTFx(k) YM YMFtime domain
filter bankfilter bank
modulation averaging

(a) Block diagram

b
b

x(k) HPF
parallel

bandpass
filters

LPF

LPF
XR

YTF
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↓ R

| · |

(·)ǫ1

log10(·)

α1
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Iγ

(b) Time domain filter bank stage
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b
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Fig. 1. a) Block diagram of the AMS feature extraction algo-
rithm b) the inner structure of time domain filter bank stage
and c) the inner structure of the modulation filter bank
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BW1 BW2 BW3

fu1/fl2 fu2/fl3 fu3fu0 = 0Hz f

Fig. 2. Filter band structure for three filters. fli is the lower
edge frequency of the i-th filter, fui is the upper edge fre-
quency of the i-th filter, and BWi is the bandwidth of the i-th
filter

2.2. Classification

We choose a Linear Discriminant Analysis (LDA) classifier
as our classification method. LDA assumes that each class
density is a multivariate Gaussian and the classes have a com-
mon covariance matrix Σ̂ [14]. For a two class classification
task, with classes 1 and 2, the decision rule for class 2 is [14]

xT Σ̂−1(µ̂2 − µ̂1) >
1

2
(µ̂2 + µ̂1)T Σ̂−1(µ̂2 − µ̂1)− log

N2

N1

(5)

where x is the feature vector, Σ̂ the covariance matrix, µ̂i the
mean of class i and Ni the number of class-i members in the
training set. For a multi-class classification task, the one-vs-
one approach was employed. The LDA classifier was trained
and tested with a k-fold cross-validation method, with k = 5.

2.3. CMA Evolution Strategy

As mentioned previously our proposed AMS algorithm has
NTF · (NM + 1) + 5 independently tunable parameters. For
NTF = 3 time domain filter and NM = 3 modulation fil-
ters, this leads to 17 parameters, which have to be chosen
properly to minimize the classification error. Finding optimal
parameters using an exhaustive search would not be feasible
due to the high dimensionality. A gradient descent algorithm
would also not be suitable because our multimodal cost func-
tion (classification error) is not differentiable. Thus we chose
a Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [13] based method in order to find an ideal parameter
set for our feature extraction step. ES is a subclass of evolu-
tionary algorithms (EA) and shares the basic idea to imitate
evolution, for instance by mutation and selection, and it does
not require the computation of any derivatives [15]. The op-
timal parameter set is approximated iteratively by evaluating
a fitness function after each step. Here, the fitness function or
cost function is the classification error (the ratio of the num-
ber of misclassified objects to the number of all objects) of
the LDA classifier as a function of the independently tunable
parameters.
The basic equation for CMA-ES is the sampling equation of

new search points [13]

xg+1
k ∼m(g) + σ(g)N

(
0,C(g)

)
for k = 1, . . . , λ (6)

where g is the index of the current generation (iteration), xg+1
k

k-th offspring from generation g + 1, λ the number of off-
spring, m(g) mean value of the search distribution at gener-
ation g, N

(
0,C(g)

)
a multivariate normal distribution with

the covariance matrix C(g) of generation g and σ(g) the step-
size of generation g. From the λ sampled new solution candi-
dates, the µ best points (in terms of minimal cost function) are
selected and the new mean of generation g + 1 is determined
by a weighted average according to

m(g+1) =

λ∑
i=1

wix
g+1
i:λ , (7)

λ∑
i=1

wi = 1, w1 ≥ w2 ≥ · · · ≥ wµ > 0. (8)

In each iteration of the CMA-ES, the covariance matrix C
and the step-size σ are adapted according to the success of
the sampled offspring. The shape of the multivariate nor-
mal distribution is formed in the direction of the old mean
m(g) towards the new mean m(g+1). The sampling, selection
and recombination steps are repeated until either a predefined
threshold on the cost function or a maximum number of gen-
erations is reached. We constricted the allowed search space
of the parameters to intervals as described by Colutto et al.
in [16]. For a more detailed description of CMA-ES, in par-
ticular on how the covariance matrix C and the step-size σ
is adapted in each step, as well as a Matlab implementation,
please refer to [13].

3. RESULTS

3.1. Data

We used the public dataset for scene classification provided
in the context of the IEEE AASP Challenge 2013 [17]. The
dataset consists of 10 acoustic scenes: busy street, quiet street,
supermarket/store, restaurant, office, park, bus, tube/metro,
tube station and open market. For each scene there exist 10
recordings of 30 seconds each. The original stereo recordings
are decimated from 44100 Hz to 22050 Hz and only one chan-
nel was used. The resolution of 16 bit remained unchanged.

3.2. AMS Parameters Obtained from CMA-ES

Based on preliminary results, the number of sixth-order time-
domain filters NTF was set to 3 and the number of sixth-
order modulation filters NM for each time-domain filter was
also set to 3. Thus, we obtained 9 features from the AMS
feature extraction stage and had 17 tunable parameters to set.
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100 101 102
−30
−20
−10

0
10

f [Hz]

G
ai

n
[d

B
]

(b) Modulation filter bank of 1st time domain filter
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(c) Modulation filter bank of 2nd time domain filter

100 101 102
−30
−20
−10

0
10

f [Hz]

G
ai

n
[d

B
]

(d) Modulation filter bank of 3rd time domain filter

Fig. 3. Frequency responses of the filters found by the CMA-
ES Optimization
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Fig. 4. Confusion matrix for the AASP Challenge Database
[17]

Parameter Value
Filter order time domain filters 6
Filter order modulation filters 6
Passband 1. time domain filter 0 - 74 Hz
Passband 2. time domain filter 74 - 142 Hz
Passband 3. time domain filter 142 - 10000 Hz
Passband 1. modulation filter of
1. time domain filter

0 - 12 Hz

Passband 2. modulation filter of
1. time domain filter

12 - 32 Hz

Passband 3. modulation filter of
1. time domain filter

32 - 220 Hz

Passband 1. modulation filter of
2. time domain filter

0 - 5 Hz

Passband 2. modulation filter of
2. time domain filter

5 - 152 Hz

Passband 3. modulation filter of
2. time domainD filter

152 - 332 Hz

Passband 1. modulation filter of
3. time domain filter

0 - 5 Hz

Passband 2. modulation filter of
3. time domain filter

5 - 8 Hz

Passband 3. modulation filter of
3. time domain filter

8 - 188 Hz

α1 0.806
α2 0.707
ε1 1.184
ε2 0.317
Iγ 1
Iν 0

Table 1. Parameter set found by the CMA-ES algorithm

These 17 features were found by the CMA-ES optimization,
which was limited to 60 generations (22 offspring were sam-
pled in each iteration) and took 3 hours on a PC with Intel(R)
Core(TM) i5-3470 CPU @ 3.20GHz and Matlab 2012 64-Bit.
The filter parameters found by the CMA-ES optimization are
shown in Table 1 and the frequency responses of the corre-
sponding filters are depicted in Figure 3.

3.3. Classification

Prior to the feature extraction step, the 30 s long audio files are
divided into 6 frames, each being 5 s long, and the extracted
features for each frame are fed into the classifier. Thus, we
got 6 classification results for each audio file. The classifica-
tion result for the whole audio file was determined by a ma-
jority vote. The achieved classification accuracy, which is de-
fined as the ratio of the number of correctly classified scenes
to the total number of scenes, is 85 % with a standard devi-
ation of 3.54 %. The corresponding confusion matrix of the
5-fold cross-validation is depicted in Figure 4. Most misclas-
sification occurred in the class quietstreet, which is confused
3 times with the class park.
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4. DISCUSSION AND CONCLUSION

In this paper, we proposed an acoustic scene classification
system based on a new AMS feature extraction algorithm,
which is inspired by the signal processing in the human audi-
tory cortex. It is computationally significantly less complex
than other known AMS-based feature extraction algorithms
[9–12]. The number of extracted features is determined by
the number of filters used in each step. As a conventional
gradient descent method (or other comparable deterministic
optimization methods) was not considered suitable to find the
ideal passband ranges for each filter, we used the CMA-ES
optimization method to solve this problem.
In order to compare our AMS-based acoustic scene classi-
fier system with other proposed methods, we evaluated it on
the basis of the publicly available dataset for scene classifi-
cation provided by the IEEE AASP Challenge 2013. With
85 % classification accuracy, our classifier significantly out-
performs the best two algorithms submitted to the challenge
(75 % [18] and 75 % [19]), with only 9 features and less com-
plex methods. Furthermore, we use a uniform feature extrac-
tion scheme and not a collection of entirely different features,
which facilitates the implementation of the method. Obvi-
ously, the parameters of these features depend on the training
data, and with different training samples and different acous-
tic scenes we will obtain different parameters. However, the
flexible yet regular structure of the feature extraction process
allows an easy adaptation to other classification tasks.
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