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ABSTRACT 

 

In this paper, we propose a useful feature-engineering 

approach for Context-Dependent Deep-Neural-Network 

Hidden-Markov-Model (CD-DNN-HMM) based Large-

Vocabulary-Continuous-Speech-Recognition (LVCSR) 

systems. The speech recognition performance of a 

LVCSR system is improved from two feature-engineering 

perspectives. The first performance improvement is 

achieved by adopting the intra/inter-frame feature subsets 

when the Gaussian-Mixture-Model (GMM) HMMs for the 

HMM state-level alignment are built. And the second 

performance gain is then followed with the additional 

features augmenting the front-end of the DNN. We evalu-

ate the effectiveness of our feature-engineering approach 

under a series of Korean speech recognition tasks (isolated 

single-syllable recognition with a medium-sized speech 

corpus and conversational speech recognition with a 

large-sized database) using the Kaldi speech recognition 

toolkit. The results show that the proposed feature-

engineering approach outperforms the traditional Mel 

Frequency Cepstral Coefficient (MFCCs) GMM + Mel-

frequency filter-bank output DNN method. 

 

Index Terms— Feature extraction, feature engineer-

ing, speech recognition, deep learning, deep neural net-

work
 
 

 

1. INTRODUCTION 

 

Whereas other technologies require user effort to adapt to 

artificial tools, voice user interface is one of the most 

natural and intuitive interaction technologies for mankind. 

Automatic-Speech-Recognition (ASR) has been consid-

ered as a dream technology (i.e., artificial intelligence) 

and has been a subject in many science fiction movies for 

many years (e.g., HAL 9000 in 2001: A Space Odyssey). 

In the world of academia, ASR has been an active re-

search area for more than the last five decades.  

However, in the past ASR was not entirely successful. 

Recently, the proliferation of voice-apps (e.g., voice inter-

net search and voice messaging service) enables the mas-

sive collection of speech data. These audio footprints from 
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ordinary people and the brilliant ideas of machine learning 

have fertilized the modern speech technologies. Since 

2009, deep learning technology utilized by researchers has 

successfully replaced the Gaussian mixtures at the indus-

trial scale [1-19]. In these days, it seems that the deep 

learning algorithm becomes a mainstream technology [6]. 

It is true that deep learning is computationally demanding. 

However, the recent advances in computing hardware 

alleviate this computational drawback.  

Despite the modern technical breakthroughs in speech 

recognition [1-19], the recognition performance of even a 

state-of-the-art ASR system is still behind a human in 

most real-world applications. It means that puzzles in 

ASR are not completed even until today. Unfortunately, 

speech recognition still remains in a challenging research 

area. One of the main reasons for the difference between 

human and machine hearings is a capability to deal with 

the highly variable nature of speech. For instance, even 

the same speaker speaks in different styles, at different 

rates, and in different emotional states. The presence of 

environmental noise, reverberation, different microphones 

and recording devices results in additional variability. 

Therefore, the robustness of a speech recognition engine 

is the key to success in real-world applications.  

The purpose of feature-extraction for ASR is to pro-

vide a compact vector which represents phonemic infor-

mation while suppressing others (e.g., variability of 

speech signal which is caused by adverse environment, 

channel, gender, age, and so on). Therefore, the feature 

extractor also plays an important role in speech recogni-

tion accuracy and robustness. In this paper, we introduce a 

useful feature-extraction approach for CD-DNN-HMMs 

from two feature-engineering perspectives. In order to 

construct CD-DNN-HMMs, we need the HMM state-level 

alignment information for the supervised learning stage of 

the DNN [2]. However, it is almost impossible to segment 

huge amounts of speech data by hands. Therefore, a 

GMM-HMM based speech recognition system is still 

necessary to get the information even under the CD-DNN-

HMM framework [2]. In this work, our first performance 

gain is caused by fine alignment information which is 

obtained by using the proposed feature subsets (the in-

tra/inter-frame feature vector subsets) [20]. And the sec-

ond performance gain is brought about by the proposed 

additional features augmenting the front-end of the DNN. 

Therefore, our second feature-engineering is focused on a 

useful feature-extraction method for the front-end of the 

DNN. We investigate several additional features. Among 
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the candidate features in our study, the features based on 

spectral entropy, pitch information and harmonic compo-

nent ratio show relatively good improvement including 

the probability-of-voicing (POV) in [21].  

The remainder of this paper is organized as follows. In 

section 2, the extendable feature subsets for the state-level 

alignment information are expressed. And then a brief 

review on the additional features for the front-end aug-

mentation of the DNN is described in section 3. In section 

4, the effectiveness of the proposed features is demon-

strated under the series of speech recognition tests using 

the popular Kaldi speech recognition toolkit [22] before 

the conclusion in section 5. 

 

2. INTRA-AND INTER-FRAME FEATURE 

SUBSETS FOR GMM-HMM 

 

The intra/inter-frame feature subsets are originally devel-

oped to cope with a recognition performance saturation 

problem in GMM-HMMs [20]. The performance satura-

tion problem means that the recognition accuracy does not 

tend to be improved despite of increasing the amount of 

training data beyond a certain size. The reason of the 

saturation seems that the representation using the tradi-

tional feature set (39 dimensional MFCCs) is not suffi-

cient. Therefore, we need more useful representations 

from acoustic speech data. The idea of the intra/inter-

frame feature subsets is motivated by this simple idea. 

Figure 1 shows the schematic diagram of the feature-

extraction approach proposed for GMM-HMMs. 

 

Fig. 1. The Schematic Diagram of the Proposed Feature-

extraction Approach for GMM-HMMs. 

As shown in figure 1, we categorize the complex char-

acteristics of speech data in terms of signal analysis scope: 

static, intra-frame, and inter-frame feature subsets. The 

purpose of the intra-frame feature subset is to capture 

rapidly changing characteristics of speech spectrum. And 

the inter-frame feature subset represents dynamic proper-

ties of input speech along the sequential frames. Therefore, 

the role of the inter-frame feature subset is similar with 

the traditional dynamic features (i.e., delta and double-

delta). The static feature subset is not different from the 

traditional one. It stands for average spectral envelope 

information in one frame. Acoustic language of a human 

is composed of two kinds of temporal acoustic variations. 

One is very rapidly changing characteristics of speech 

spectrum which is not fully covered by the traditional 

quasi-stationary assumption. And the other is temporal 

variations of speech along with speech-frame sequences. 

For instance, a vowel sound consists of specific combina-

tions of relatively steady-state frequencies, while conso-

nants are made of rapid transitions of frequencies that may 

change even within a single syllable. Not surprisingly, we 

(humans) are able to perceive these complex changes of 

speech spectrum. 

In the previous work [20], we tried to extract these two 

temporal properties using the intra/inter-frame feature 

extraction framework. Rapidly changing auditory cues are 

captured by a simple sub-frame analysis method. More 

various temporal dynamics along the sequential input 

frames is efficiently estimated by exploiting a temporal 

Discrete-Cosine-Transform (DCT) method [23].  

 

 

Fig. 2.  The Block Diagram of the Intra/inter-frame Feature-

extraction Approach. 

Figure 2 shows the block diagram of the proposed in-

tra/inter-frame feature-extraction approach. The total 

dimension of the proposed feature vector is extended to 69, 

since a sub-frame log-energy difference (1) and its tem-

poral variations (3) are recently added to the previous 65-

dimensional feature vector [20].  

 

 

Fig. 3. Sub-frame Log-energy Difference Calculation. 
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Figure 3 indicates the estimate procedure of the sub-

frame log-energy difference with the sub-frame analysis 

method. This feature is also useful for representing rapid 

changes of speech spectrum. 

 

3. ADDITIONAL FEATURES FOR DNN INPUT  

 

We have a question about the front-end of the traditional 

DNN for speech recognition. Is the Mel-frequency filter-

bank output sufficient for machine hearing? In 2014, it 

was reported that a simple additional feature (i.e., POV) 

could improve the recognition performance of DNN-

HMMs [21]. In this work, we investigate several addition-

al features and introduce some useful features among 

them. The useful features for the front-end of the DNN are 

based on spectral entropy (SE), pitch information (PI) and 

harmonic frequency component ratio (HFCR). The spec-

tral entropy based feature is obtained as follows. The input 

spectrum is converted into 𝑥𝑖. 

 𝑥𝑖 =
𝑋𝑖

max{𝑋𝑖}
 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁               (1) 

Where 𝑋𝑖  indicates the energy of the ith frequency 

component of the input spectrum. The entropy is comput-

ed with equation (2). 

 

H(𝑥) = ∑ 𝑥𝑖 × log10(𝑥𝑖)𝑁
𝑖=1                               (2) 

 

The dynamic range of the spectral entropy values is 

bounded in (0, 50) and converted as follows,  

 

entropy feature = log (
𝐻(𝑥) 50⁄ +0.0001

1.0001−𝐻(𝑥) 50⁄
)            (3) 

 

The proposed spectral entropy based feature is ob-

tained with equation (3).  

 

Fig. 4.  Feature-Extraction Procedure of the Proposed HFCR. 

The proposed HFCR represents how many harmonic 

frequency components are included in the input spectrum. 

In this work, we heuristically detect harmonic frequency 

components in speech spectrum as shown in figure 4. The 

values of the harmonic component ratio are also converted 

to make them good for the Kaldi DNN input.  

Figure 5 describes the feature-extraction procedure of 

the proposed pitch information. Unlike in [21], a very 

simple algorithm is adopted to extract pitch information 

from speech input. The logarithmic value conversion 

approach is also applied as shown in figure 5. 

 

Fig. 5.  Feature-Extraction Procedure of the Proposed PI. 

 
4. EXPERIMENTS 

 

In order to demonstrate the feasibility of the proposed 

feature-extraction approaches, a series of speech recogni-

tion tests (isolated single-syllable recognition and conver-

sational speech recognition tests) are conducted. We first-

ly evaluate the state-level alignment accuracy. And then, 

we investigate the effectiveness of the proposed additional 

features for the front-end augmentation of the DNN. Me-

dium-sized single-syllable recognition tests are conducted 

to save time before the computationally demanding large-

vocabulary conversational speech recognition test. The 

size of the training data for isolated single-syllable recog-

nition tests is about 120 hours. And 1,713 utterances from 

10 speakers (i.e. 5 males and 5 females) are prepared for 

the test. The test utterances are composed of isolated sin-

gle-syllables including complicated Korean diphthongs. 

Overall Korean single-syllable recognition accuracy is 

relatively low, since Korean diphthongs are very hard to 

be identified even by a native Korean.  

The feature set for the baseline speech recognition sys-

tem consists of the traditional 39 dimensional MFCCs 

(static 13, delta 13 and double-delta 13 including C0) and 

40 log-scale Mel-frequency filter-bank outputs. For the 

baseline GMM-HMMs, ~1,650 tied tri-phone states and 

~20,060 Gaussian mixtures are obtained by using the 

traditional MFCCs. The input layer for DNN-HMMs has 

600 (40*(7*2+1)) nodes including 7 left/right context. 

Linear discriminant analysis as a preprocessor is applied 

without dimensional reduction.  The number of hidden 

layers is 4 and each hidden layer is composed of 1,024 

nodes. The number of output layer nodes is ~1,650 de-

pending on the tied tri-phone state number of the baseline 

GMM-HMMs. The exponentially decaying learning rate 

is adopted for 20 epochs. The initial value of the learning 

rate is 0.01 and the last is 0.001. Hyperbolic tangent is 

exploited as an activation function. Layer-wise supervised 

learning scheme is applied without unsupervised pre-

training. We set 200k samples per each node during the 
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training session. The dimension of the proposed feature 

set is extended to 69 including the intra/inter-frame fea-

ture subsets.  

 

Feature set Recognition rate 

MFCC(GMM)→ MelFBE(DNN) 53.8% 

Intra/Inter-frame (GMM)→ 

MelFBE(DNN) 
57.6% 

Table 1. Korean Syllable Recognition Result. 

 

Table 1 shows the result of the Korean single-syllable 

recognition tests to compare state-level alignment accura-

cies. The syllable recognition result indicates that the 

proposed feature subsets are useful for a CD-DNN-HMM 

framework, since more accurate state-level alignment 

information is obtainable. Therefore, the absolute recogni-

tion improvement of 3.8% as shown in table 1 is achieved. 

In order to further improve Korean single-syllable 

recognition accuracy, we propose several additional fea-

tures for the front-end augmentation of the DNN. 

 

Feature set Recognition rate 

Intra/Inter-frame (GMM)→ MelF-

BE+POV(DNN) 
59.5% 

Intra/Inter-frame (GMM)→ MelF-

BE+HFCR(DNN) 
59.5% 

Intra/Inter-frame (GMM)→ MelF-

BE+SE(DNN) 
59.8% 

Intra/Inter-frame (GMM)→ MelF-

BE+PI(DNN) 
60.0% 

Table 2. Korean Syllable Recognition Result. 

 

Table 2 shows the result of the Korean single-syllable 

recognition tests to evaluate the effectiveness of the pro-

posed additional features. In this experiment, the 69 di-

mensional intra/inter-frame feature vector is utilized for 

the state-level alignment information. The syllable recog-

nition result shows that all the proposed additional fea-

tures are useful for DNN-HMMs. As shown in table 2, the 

additional recognition improvement of 2.4%, the best 

result in table 1, is obtainable by simply adding the PI 

feature to the front-end of the DNN.   

In order to confirm the feasibility of the proposed fea-

ture-engineering method, large-vocabulary speech recog-

nition tests are also conducted under conversational 

speech recognition task. ~1,182 hour speech data (rela-

tively clean) are prepared for the acoustic model training. 

All the speech data are collected by Electronics and tele-

communication Research Institute in Korea. The test data 

are separated into 3 categories as follow, 

1. SponBroadCast: interview speech in Korean 

broadcast news, 891 utterances 

2. SponPresentation: oral presentation of Korean 

university students, 1,184 utterances 

3. SponDebate: discussion speech in Korean 

broadcast discussion programs, 1,308 utterances 

All the test speech samples are from ordinary persons, 

not a professional broadcaster or presenter. The number of 

hidden layers is extended to 5 with 2,048 nodes for com-

plicated conversational speech recognition. The dictionary 

can cover ~489,000 unique entries. 

 

Feature set Set 1 Set 2 Set 3 

MFCC(GMM)→ MelF-

BE(DNN) 
75.96% 84.93% 77.61% 

Intra/Inter-frame (GMM)→ 

MelFBE+PI(DNN) 
77.90% 85.85% 79.54% 

Table 3. Korean Conversational Speech Recognition Result. 

 

Table 3 shows the Korean conversational speech 

recognition result between the traditional (39 MFCCs 

(GMM) + 40 MelFBEs (DNN)) and the proposed (69 

GTCCs (GMM) + 41 MelFBEs+PI (DNN)) feature-

engineering methods. The syllable recognition accuracy in 

table 3 indicates that the proposed feature-engineering 

approach is consistently effective in large-vocabulary 

conversational speech recognition even under the various 

conversional situations. 

 

5. CONCLUSIONS 

 

The feasibility of the proposed feature-engineering ap-

proach is demonstrated through a series of the Korean 

speech recognition tests (the medium-sized single-syllable 

recognition and the large-sized conversational speech 

recognition tasks) using the popular Kaldi speech recogni-

tion toolkit [22]. The recognition accuracy of acoustic 

models without any higher-level knowledge (e.g., lan-

guage model) is evaluated under the isolated single-

syllable recognition test. We think that this medium-sized 

syllable recognition test is an efficient assessment proce-

dure before the time-consuming LVCSR experiment.  

All the speech recognition experiment results includ-

ing conversational speech recognition indicate that the 

proposed feature-engineering approach outperforms the 

traditional method. That is, the proposed intra/inter-frame 

feature subsets represent useful information for HMM 

state-level alignment. And the proposed additional fea-

tures effectively augment the front-end of the DNN. In 

this work, all the proposed additional features for the 

front-end of the DNN are coincidently related with the 

distinct characteristics separating voicing portions from 

input speech. Despite of simple feature-extraction algo-

rithms, the further recognition improvement is obtained by 

adding a simple feature to the front-end of the DNN. The 

absolute single-syllable accuracy improvement of 6.2% is 

totally achieved under the proposed feature-engineering 

approach. It is also confirmed that the effectiveness of our 

feature-engineering approach continues in the relatively 

large-vocabulary conversational speech recognition tasks. 

It is reported that the intra/inter-frame feature subsets 

are robust in the presence of adverse noise [20]. Therefore, 

the further recognition performance improvement is ex-

pected in the case of matched condition training. In this 

experiment, any advanced techniques for GMM-HMMs 

are not adopted. Therefore, further performance gain is 

also expected by collaboration with the effective speech 

recognition technologies (e.g., speaker adaptation, dis-

criminative training) [7]. 
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