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ABSTRACT

This paper extends our previous work on graph oversam-
pling for graph signal processing. In the graph oversampling
method, nodes are duplicated and edges are appended to
construct oversampled graph Laplacian matrix. It can con-
vert an arbitrary K-colorable graph into one bipartite graph
which includes all edges of the original graph. Since it uses
a coloring-based algorithm, performance of graph signal pro-
cessing depends on the coloring results. In this paper, we
present graph oversampling based on a few different graph
bipartition methods which use maximum spanning tree and
eigendecomposition. Furthermore, we consider the effective
selection method of duplicated nodes. The performance of
the oversampled graphs is compared through an experiment
on graph signal denoising.

Index Terms— Graph signal processing, graph biparti-
tion, graph oversampling, graph wavelets, graph filter banks

1. INTRODUCTION

Graph signal processing has been developed as a useful tool
for analysis of high-dimensional data [1], such as sensor and
brain networks, traffic, learning, and images. Whereas sig-
nals of regular signal processing have very simple structures,
those of graph signal processing are allowed to have complex
irregular structures. Graph wavelet transforms can be used for
analyzing, processing or compressing graph signals.

An important topic in graph wavelet transform is down-
sampling and upsampling. Similar to the aliasing of regular
signal processing, the spectral folding phenomenon is oc-
curred by downsampling in graph signal processing. In order
to deal with this challenge, studies on decimated graph fil-
ter banks have focused on bipartite graphs and determined
the perfect reconstruction conditions [2, 3]. Hence, the deci-
mated transforms can only be applicable to bipartite graphs.
There are some approaches for applying graph-based fil-
ter banks to arbitrary non-bipartite graphs. Coloring-based
bipartition [2] decomposes a non-bipartite original graph
into an edge-disjoint collection of bipartite subgraphs whose
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union is the original graph, and the transform is performed
on each of these subgraphs. Recently, the maximum span-
ning tree (MST)-based bipartition was introduced [4]. In the
method, one bipartite subgraph, which approximates the orig-
inal graph so as to maximize the total weight of edges in the
bipartite subgraph, is made and the transform is performed
on the subgraph. Both approaches cannot utilize some edges
in one-stage transform because a subgraph has only a part of
edges of the original graph. Although the bipartition based
on the polarity of the largest eigenvector [S] has been pro-
posed as one of graph downsampling schemes, it has not been
designed for a construction of bipartite graphs.

In our previous work [6, 7], we proposed graph over-
sampling, that yields oversampled graph Laplacian matrices
as well as oversampled graph signals. We also introduced
the graph oversampling method based on the coloring-based
bipartition for non-bipartite graphs. It enables us to make
one oversampled bipartite graph that includes all edges of
the original non-bipartite graph. However, the oversampled
graph has high redundancy and its performance obviously
depends on the coloring results.

In this paper, we propose an effective graph oversam-
pling method based on arbitrary bipartition algorithms. It can
make the oversampled bipartite graph, which includes many
edges in the original graph while controlling the redundancy,
by appending the nodes which will affect the overall per-
formance. We examine the performance of the oversampled
graphs through a graph signal denoising experiment. On the
basis of bipartite subgraphs made by the MST, by the ap-
proximate coloring [8], and by the coloring-based bipartition,
the oversampled graph is constructed with various redundan-
cies. From the experimental results, we discuss the effect of
bipartition methods for graph oversampling.

The rest of this paper is organized as follows. In Section
2, we describe notations used in this paper and the decimated
graph filter banks [2, 3, 6]. Section 3 presents three biparti-
tion methods. Section 4 introduces the construction method
of the oversampled graph with arbitrary redundancy. Section
5 shows the performance analysis of the oversampled graph
based on the three bipartition schemes through denoising ex-
periments. Section 6 concludes the paper.
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2. PRELIMINARIES

2.1. Graph Signals

A graph is represented as G = {V, £}, where V = {vg, v1,

.,un—1} and & denote sets of nodes and edges, respec-
tively. The graph signal is defined as f € RY. We will
only consider a finite undirected graph with no loops or mul-
tiple edges. The number of nodes is N = |V|, unless other-
wise specified. The (m,n)-th element of the adjacency ma-
trix A is the weight of the edge between m and n if m and
n are connected, and O otherwise. The degree matrix D is
a diagonal matrix and its m-th diagonal element is d,,,,, =
> Gmn- The unnormalized graph Laplacian matrix (GLM)
is defined as L := D — A and the symmetric normalized
GLM is £ := D~Y/2LD~1/2. The symmetric normalized
GLM has the property that its eigenvalues are within the inter-
val [0, 2], and we will use £ in this paper. The eigenvalues of
L are \; and ordered as: 0 = A\g < A1 < Xg... < An_1 <2
without loss of generality. The eigenvector w, corresponds
to A\; and satisfies Luy, = A;uy,. The entire spectrum of G
is defined by ¢(G) := {Xo,...,An—1}. The projection ma-
trix for the eigenspace V), is Py, = >\ uyul, where
ul is the transpose of wy. Let h();) be the spectral ker-
nel of filter H. The spectral domain filter can be written as
H = h(L) = ZAiea(g) h()\i).P,\i. The spectral domain fil-
tering of graph signals can be simply denoted as H f.

2.2. Two-Channel Graph Wavelet Filter Banks

A bipartite graph whose nodes can be decomposed into two
disjoint sets L and H such that every edge connects a node
in L to one in H can be represented as G = {L, H,E}. The
downsampling function Sz of a bipartite graph is defined as

+1 ifme H,

BH(m):{l itm e L. W

The diagonal downsampling matrix is Jy = diag{8y(m)}
and satisfies J = Jyg = —Jp. The downsampling-then-
upsampling operation can be defined as Dy, 1, = %(IN +
Ji), Dau,ar = %(IN +Jg), where Iy is an N x N identity
matrix.
J and P, are related as follows [2] (spectral folding phe-
nomenon):
JP,, =Py, J. 2)

The critically sampled filter banks decompose N input signals
into |L| lowpass coefficients and |H| highpass coefficients,
where |L| + |H| = N, as illustrated in Fig. 1. The overall
transfer function can be written as

1 1
3)
1 1
= §(G0Ho + GlHl) + i(GlJHl — GoJHo).

Fig. 1. Critically sampled two-channel graph filter bank.

The spectral folding term G1JH; — GoJH,, arising from
downsampling and upsampling, must be zero. In addition,
T = I,y must be satisfied for perfect reconstruction. Hence,
the perfect reconstruction condition can be expressed as

go(M)ho(A) + g1(AM)hi(N) = 2,

oo~ ) + gV 2—n) =0. P

There are two well-known perfect reconstruction filter
sets: graph-QMF [2], which is the orthogonal transform
and non-compact support, and graphBior [3], which is the
biorthogonal transform and satisfies perfect reconstruction
and compact support conditions.

2.3. M-Channel Graph Filter Banks

The authors proposed M-channel oversampled graph filter
banks [6], where M is even and M/2 filters keep |L| sig-
nals and other ones keep |H | signals. Similar to the critically
sampled case, the perfect reconstruction condition of the M-
channel oversampled graph filter bank can be represented as

> aNhe(N) =2, (5)

D g2 = A) = grparz(Mhiar2(2 = A) = 0.

(6)

for any A € [0, 2]. The design methods of perfect reconstruc-
tion filters are described in [6,9].

3. GRAPH BIPARTITIONS

The decimated graph filter bank is applicable only for bipar-
tite graphs. We describe three bipartition methods to make
a bipartite graph G = {L;, Hy, &} from the original non-
bipartite graph G = {V,£}. & C & includes all the edges
between sets L; and H}, for all methods.

3.1. Maximum Spanning Tree-Based Bipartition

For the MST-based bipartition [4], the MST 7 is constructed
by using Prim’s algorithm [10]. The nodes are divided by the
distance from the root node r € L:

Ly :={i €V :dy(i,r) is even},

Hy :={i € V: dr(i,r) is odd}. @
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where d7(i,7) is the number of edges of the shortest path in
T from 7 to i.

3.2. Eigendecomposition-Based Bipartition

In graph theory, the approximate coloring partition has been
known, which is based on the polarity of eigenvector Umin
associated with the most negative eigenvalue of the graph ad-
jacency matrix [8]:

Ly :{7 cV: ﬂmin(i) > O}, ®)
Hy ::{i eVv: ﬂmin(i) < 0}

The bipartition can approximate the original graph so as to
reduce the edges included in the same set of nodes.

3.3. Coloring-Based Bipartition

The Harary’s algorithm [11] is the bipartition based on the
graph coloring. A color is assigned to each node with the
minimum number of colors so that no two adjacency nodes
have the same color. An arbitrary K-colorable graph can be
decomposed into an edge-disjoint collection of |log, K | bi-
partite subgraphs whose union is the original graph. One of
bipartite subgraphs is determined as:

Lb ::{F17...’F"%“},

Hy :={F F ©)
b-*{ [%'H»la"'v K}7

where the sets Fi,...,
same color.

Fi contain the nodes assigned the

4. GRAPH OVERSAMPLING

In this section, we describe the graph oversampling [6, 7],
and propose the effective construction method of oversam-
pled GLMs and oversampled graph signals while controlling
the redundancy.

4.1. Oversampled Graph Laplacian Matrix

Fig. 2 shows an example of the transform using graph over-
sampling. By appending the nodes and the edges, the original
bipartite graph G = {L HE } is expanded to the oversam-
pled bipartite graph G = {L, H,E} that L and H includes
L and H, respectively. The downsampling matrices J; and

J 7 of the oversampled graph are defined by L and fI . The
oversampled signal f is written as

7|\
= {f/], (10)

where f’ is the signal for additional nodes. The spectral do-
main filtering is performed based on the oversampled GLM.

No [ grapn
oversampling

Fig. 2. Graph oversampling followed by the critically sampled
graph filter bank.

Let Ay be an adjacency matrix of the original bipartite
graph whose size is Ny x Ng. The normalized oversampled
GLM L is Ny x Ny (N1 > Ny), and N1 — Ny is the number
of the additional nodes. It is represented as

L =D '/?2LD /2 an
where
L=D-A (12)
Y Ag Agy
A= , 13
|:Agl ON1N0:| (13)

in which A is the oversampled adjacency matrix whose size
is Ny x N7 and D is a degree matrix that normalizes the new
GLM. Additionally, Ay; contains information for the con-
nection between the original nodes and appended ones. Note
that nodes are appended so that L is still a bipartite graph.
The filters in Fig. 2 can be represented as H;, = h;(£) and
G; = gi(L) fori =0,1.

4.2. Graph Oversampling Method

As described in Section 4.1, the appended nodes of the over-
sampled GLM can be arbitrarily connected to the original
nodes, as long as the oversampled graph is bipartite. We con-
sider an efficient way to construct such oversampled graphs.
We assume that the appended nodes are only connected to
nodes in L in order for the oversampled graph to be a bipartite
graph and the number of lowpass coefficients to be the same
as that of the critically sampled transform. The number N,
of additional nodes is determined depending on the desired
redundancy. Hence, the oversampled graph is represented as
G={L=1Ly,H=HU L}, E} where |Lj| = N,. The
following procedure describes the construction method of the
oversampled graph from the original graph G = {V,£}:
1. The foundation bipartite graph G, = {L;, Hyp, Ep } is gen-
erated from the original graph by using arbitrary biparti-
tion method.

2. The remained subgraph is calculated as G = {V, £ \ &}.
G has two disjoint graphs: G(Lp) and G(H,).

3. The appended nodes are selected according to the degrees
of nodes in G(L;). The N, nodes with the largest degrees
are included in Lj.

4. The nodes in Lj are placed directly above each nodes in
L;, of the foundation bipartite graph. The nodes in Lj have
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Fig. 3. Bipartite oversampled graph construction for Petersen
graph. (a) Petersen graph. (b) Foundation bipartite graph.
Red and blue nodes represent L, and Hj, respectively. (c) Re-
mained graph. (d) Oversampled bipartite graph. The dashed
lines connect the nodes in L; with the corresponding addi-
tional nodes. The gray lines are edges contained in foundation
bipartite graph and the black lines are additional edges.

(a) (b) (©

Fig. 4. Original signals. (a) Minnesota Traffic Graph (N =
2642). (b) Yale Coat of Arms (N = 989). (c) Bus Graph
(N = 685).
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the same value as those in L;. By letting L; be in H, it
can be connected freely with the nodes in L, since they
belong to L.

SNR Comparison: Yale Coat of Arms

SNR Comparison: Yale Coat of Arms

5. The edges between Lj and L are appended by using the

edge information of G (Lp). As aresult, all nodes can con-
nect with L, or Lj while keeping the graph bipartite.

6. The isolated nodes in G is removed.

For example, we construct the oversampled bipartite
graph of the Petersen graph (Fig. 3(a)) with N, = |Lp|. The
foundation bipartite graph (Fig. 3(b)) is made by dividing the
nodes according to the parity of the nodes, i.e. even-labeled
nodes are in L; and odd-labeled nodes are in H. Fig. 3(c) is
the remained graph. In order to make the oversampled bipar-
tite graph shown in Fig. 3(d), we place blue nodes right above
the red ones of the foundation bipartite graph (Fig. 3(b)) and
add edges by referring to the information about the edges of
the remained subgraph (Fig. 3(c)). The additional blue nodes
have the same values as the corresponding red nodes and are
treated as f’ in (10). Node vs is the red node in G, and is
isolated in G. Therefore, ve does not have a corresponding
appended node.

5. EXPERIMENTAL RESULTS

We perform the experiment on graph signal denoising to ex-
amine the relationship between redundancy and performance
gain for the oversampled graphs based on the different bipar-
tition methods. Graph signals corrupted by white Gaussian
noise are denoised by the simple hard thresholding. The over-
sampled graphs are constructed according to Section 4.2 with
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Fig. 5. SNR comparison. Filled circles indicate the results of
the critically sampled graph and the oversampled graph with
the maximum number of | L} |: (a) Signals on Minnesota Traf-
fic Graph with ¢ = 1/2. (b) Signals on Yale Coat of Arms
with 0 = 1/8. (c) Signals on Bus Graph with o = 1/16.

various set of redundancies. The foundation bipartite graphs
are made by the MST, the eigendecomposition of adjacency
matrix (EDAM) and the coloring-based algorithm. Then, we
implement four-channel graph filter bank [9] derived from the
oversampled linear phase perfect reconstruction filter bank
[12] on these oversampled bipartite graphs. After the one-
level decomposition of the corrupted input signal, the lowest
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Table 1. Comparison of Bipartitions: |L,,,.| is the maximum
number of |L}| and wioa is the total weight of the edges in
Gb.

Method \ Original graph \ MST \ EDAM \ Coloring
Minnesota Traffic Graph (N = 2642)

| Ly| 1313 1335 1592
| L o] - 317 405 981

|Ep] 3303 2979 2833 2615

Yale Coat of Arms (N = 989)

| L] - 488 489 798
| L] o] - 457 467 798

|Es 2701 1693 1764 976

Bus Graph (N = 685)

| L] - 351 452 648
| L] o] - 186 495 648

|Ep] 1282 976 515 203
Wiotal 185812 175117 | 113016 11696

frequency subband was kept, and the other high-frequency
subbands are applied hard-thresholding with the threshold 3o,
where o is the standard deviation of noise. The tested signals
are on Minnesota Traffic Graph, Yale Coat of Arms and Bus
Graph as shown in Fig. 4. The Minnesota Traffic Graph and
the Yale Coat of Arms are unweighted graphs.

Table 1 compares the number of the lowest frequency co-
efficients | L | , the maximum number of |Lj|,! the number of
edges in the foundation graph and the total of edge weights in
Gp. Figure 5 shows SNRs plotted against the number of the
nodes and the fraction of the number of the edges correspond-
ing to that of the original graph: Fugee = 3(|€] + [&])/E].
When we focus on the filled circles corresponding to the de-
noised results by using the foundation (critically sampled)
graphs, we can observe that the performance of the graph bi-
partition depends on the underlying graph structure. From
the comparison of the oversampled graphs, it can be seen that
the SNRs are varied depending on the foundation graphs even
if the oversampled graphs have the same number of nodes.
However, if we see the number of edges, the performance has
a relationship with Fige, i.e., oversampled bipartite graphs
which contains many edges in the original graph show rela-
tively higher performances.

6. CONCLUSION

We proposed a new construction method of the oversampled
graph utilizing the MST, the EDAM and the coloring-based
bipartition with various redundancy. The proposed method
can append many edges with desired redundancy. In the de-
noising experiment, we found that the bipartite graph having
many edges in the original graph shows higher performance

!Since the isolated nodes in G is removed, the maximum number of | L} |
is less than |Lp|.

in many cases. It would be expected that constructing the
foundation graph which maximizes the number of the isolated
nodes in the remained graph leads high performance gain. It
is an interesting open problem.
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