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ABSTRACT 

Dynamical systems describing a physical process with a 

dominant diffusion phenomenon require a large dimen-

sional model due to their long memory. Without prior 

knowledge, it is however not straightforward to know 

if/whether one deals with a fractional order system or long 

memory effects.  

Since the parametric modeling of a fractional system is 

very involved, we tackle the question whether fractional 

insight can be gathered in a non-parametric way. 

In this paper we show that the classical Fourier basis 

leading to the Frequency Response Function (FRF) lacks 

fractional insight. Therefore, we introduce a Taylor-

Fourier basis to obtain non-parametric insight in the frac-

tional system. This analysis proposes a novel type of spec-

trum to visualize the spectral content of a fractional sys-

tem: the Taylor-Fourier spectrum. 

Index Terms—Non-parametric modeling, dynamic 

systems, fractional order systems, Taylor-Fourier ba-

sis, theory of frames
 
 

1. INTRODUCTION 

Linear Time Invariant (LTI) dynamical systems are well 

studied and as such known to be fully described by their 

Impulse Response Function (IRF) or, their frequency 

domain equivalent, Frequency Response Function (FRF). 

Both serve as a non-parametric estimate of the studied 

dynamical system. 

Diffusion phenomena complicate the dynamical mod-

eling, particularly if diffusion is observed in non-

homogeneous media. In [1] the Langevin diffusion equa-

tion was generalized to allow arbitrary diffusion 

processes: 

 

where  is the mass,  the one-dimensional displace-

ment,  the external force,  the viscosity parameter of 

the medium and  denotes the fractional order deriva-

tive in Riemann-Liouville [2] or Caputo sense [3]. In 

physical systems one often discriminates between:  

• anomalous or heterogeneous diffusion ( ),  

• homogeneous diffusion ( ),  

• Lévy flight processes (( )  

• Richardson diffusion ( )  
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See [4] for a very extensive overview. 

In system identification and data driven modeling we wish 

to either parametrically or non-parametrically model the 

system’s dynamics. This goal can be achieved by estimat-

ing the poles and zeros to understand the system’s damp-

ing, resonances and frequency attenuation. One can also 

aim at describing the power spectrum of the observed 

signals to study the energy distribution over the frequency 

band or roll-off for instance. However, dealing with frac-

tional systems complicates both modeling approaches. 

The parametric approach encounters difficulties to fit a 

classical rational form as model selection criteria exhibit 

over-parametrization due to the fractional system’s long 

memory effects [2], [5]. Non-parametrically one cannot 

discriminate a fractional order system from an integer 

order system without prior knowledge by using the clas-

sical FRF, as will be illustrated in this paper. 

Furthermore, we will propose a new non-parametric 

estimation method which extends the classical Fourier 

basis to the (fractional) Taylor-Fourier (TF) basis. The TF 

basis has already been proposed in power system analysis 

(see for instance [6] and [7]) to study amplitude modula-

tion effects which present themselves as leakage when the 

power spectrum is computed through windowing. Now, 

we will study and apply this technique for fractional order 

systems. 

2. FRACTIONAL ORDER LINEAR SYSTEMS 

2.1 Partial fractional representation 

We consider a linear time-invariant fractional order sys-

tem  characterized by its partial fraction decomposi-

tion in terms of the system’s complex conjugate poles  

for  with fractional multiplicities 

. The frequency domain characteristic is 

given by: 

 (1) 

where  denotes the complex conjugate of  and  de-

notes the angular frequency or Fourier variable. Through-

out this paper, we assume that the system (1) is commen-

surate such that there exists a  such that 

 for . 

Fractional order systems are part of fractional order 

calculus and, as such, require fractional order derivatives. 

We use for the remainder of this paper fractional deriva-

tives of Caputo-type, [3]. Note that the results established 

in this paper can be reproduced for fractional derivatives 

of the Riemann-Liouville type due to the commensurate 

orders. 
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Let  be a real-valued function which is at least -

times differentiable, then the (right) Caputo derivative of 

order  is defined as, 

 (2) 

Note that for simplicity we selected the under-limit of the 

integral to coincide with the start of the observation win-

dow. From (1) and (2) we can compute the impulse re-

sponse corresponding to the Laplace characteristic . 

Proposition 1. For commensurate orders the frequency 

domain characteristic  holds the following impulse 

response 

Re  (3) 

Furthermore, the impulse response in (3) is the solution 

of the following fractional order eigenvalue problem 

 (4) 

where . 

The proof of (3) is an immediate result of the Laplace 

transform for arbitrary derivatives, whereas (4) is estab-

lished by applying the binomial series to the differential 

operator . 

2.2 Motivation and problem statement 

As the Laplace transform represents an ordinary differen-

tial equation into a rational form, these meromorphic 

functions serve as universal approximators of a conti-

nuous-time, time-invariant dynamical system. As a result 

also fractional system (1) can be approximated arbitrarily 

well by a rational form of a sufficient high degree. 

It has been observed in [5],[8] that systems with a dif-

fusion component often require a high number of poles 

and zeros to allow an appropriate fit of the data. In [2] 

these diffusion systems were shown to exhibit chains of 

alternating poles and zeros as a function of their angular 

frequency which can be compressed into a pole of a frac-

tional multiplicity as in (1). 

The chains of alternating poles and zeros are the only 

indication that one is dealing with a fractional order sys-

tem. This is illustrated in Fig. 1 where system (1) is used 

for  and . The 

system was sampled at a rate of 3450 Hz and the time 

series consisted of 2048 samples. The excitation signal 

was white Gaussian noise with a unit spectral density in 

the band up to 1.5 kHz. The example was modeled by 

rational form with 10 poles and 10 zeros as selected by an 

AIC model selection analysis. The parameter estimation 

of the rational form’s coefficients followed a two-step 

procedure. Let  represent the rational form’s 

polynomials of numerator and denominator respectively 

with coefficient vectors , then in a first step the coeffi-

cients are identified through a Least Squares (LS) ap-

proach: 

 (5) 

with  the Fourier coefficients at bin  and  

are the respective discrete Fourier coefficients of the exci-

tation signal and its response to the system respectively. In 

the next step, these LS estimates are applied as initial 

values to optimize the following nonlinear least squares 

problem 

 
(6) 

In Fig. 1 the solution of (5) and (6) is shown in blue and  

green, respectively, and the cross markers are the ratio 

. 

From Fig. 1 it follows that based on the impulse re-

sponse and the frequency response, one cannot see that 

one is dealing with a fractional order system. The FRF 

gives the impression of dealing with a second order sys-

tem. Only the parametric modeling reveals the presence of 

poles and zeros which do not correspond to actual reson-

ances.  

Since the FRF is clearly not a good tool, we wish to 

study an alternative technique which allows inspecting the 

fractional order properties in a non-parametric way  

The lack of fractional insight of the classical FRF is 

due to the impulse response (3) of a fractional system. The 

impulse response no longer consists of damped exponen-

tials but holds a polynomial term. As a result, a basis of 

the form  with  the fundamental (angular) 

frequency seems more natural. In the next section, we 

study how Taylor-Fourier expansion can be obtained for 

(3). 
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Fig. 1. An integer-order approximation of (1) with model 

order 13/14: Time domain (top), Freq. domain (bottom) 
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3. TAYLOR-FOURIER ANALYSIS 

3.1 Taylor-Fourier basis 

Consider the set of impulse responses  on the com-

pact time horizon  which are band-limited such 

that the frequency characteristic ) has a compact sup-

port . It is well known that these impulse 

responses represent the band-limited square-integrable 

functions denoted by . We denote the Hilbert 

space of square integrable functions by .The 

following is a classical result from functional analysis. 

Proposition 2. The set  

forms a complete orthogonal set in . 

The proof can be found in [9]. Due to the impulse re-

sponse (3), we consider the set for  

 (7) 

Proposition 2 together with the observation that 

, since these are not band-limited, leads to the 

following intermediate result: 

Lemma 1. The set (7) forms a complete set in  

consisting of the functions  on  such that 

. Moreover  is a complete (Hilbert) 

subspace of . 

The proof is a trivial consequence of Proposition 2. Con-

sider next the set  consisting of the fractional polyno-

mials . This leads to the following 

generalization of Lemma 1. 

Proposition 3. The union  of Taylor-Fourier 

functions forms a dense set in  consisting of the func-

tions  on  such that  with 

. Moreover  is a complete (Hilbert) sub-

space of . 

The proof follows by noting that  is the direct sum of 

the vector spaces  for . This result implies 

that the union  is a Schauder basis such that for 

each function in  a unique Taylor-Fourier expansion 

exists. The next subsection describes how this expansion 

can be computed. 

3.2 Taylor-Fourier series expansion 

The problem with the obtained Schauder basis  is 

that its elements are not orthogonal but oblique. As a 

result, we must show that this basis is a Riesz basis to use 

its good properties. In [10], a Riesz basis is defined as a 

Schauder basis  such that there exist a constant 

 with the property that or  it holds that for 

each  

 (8) 

Note that sequences which are no Schauder basis but 

satisfy (Bessel’s) inequality (8) are called Bessel se-

quences in functional analysis. 

Proposition 4. The Schauder basis  is a Riesz 

basis of  for . 

The proof is found in [11]. The theory of Riesz bases is 

well known in the literature of wavelets, particularly 

frames. We refer to [12] and [13] for the interested reader 

in this material. Establishing the result in (8) allows defin-

ing the following linear, bounded and invertible operator 

(see [10], p. 185 eq. 2) on the Hilbert space  which 

holds the key to construct the Taylor-Fourier series. 

 (9) 

with  and  

The most important consequence of a Riesz basis is that 

the operator  in (9) maps a Riesz basis to a Riesz basis 

which forms a bi-orthogonal sequence: sequences  

with  are called bi-orthogonal if 

 

This leads to the most important theorem on Riesz bases 

applied to  establishing the Taylor-Fourier series. 

Proposition 5. Let  such that  is its dual 

with the property  then the following Taylor-

Fourier series holds 

 (10) 

The general proof is found in [10] (p. 186, Lemma 5). 

Note that the classical Fourier basis is orthogonal to itself 

such that the Fourier basis is equal to its dual. The dual of 

the Taylor-Fourier basis is not directly accessible so we 

need a computational trick to obtain (10). 

4. DIGITAL COMPUTATION OF THE TF 

ANALYSIS 

Computers cannot handle a countable basis  so 

we restrict the analysis to the finite dimensional subspace 

where the Taylor-Fourier analysis is restricted to 

 (11) 

where  represent the sampled time instants and  the 

unknown TF coefficients. It is clear from the linear com-

bination in  that finding the unknown TF coefficients 

is a regression problem. As a result, we define the regres-

sion matrix  with elements given by 

 

where  denotes rounding the number  to the nearest 

integer towards  or the floor operator. The next propo-

sition transforms Proposition 5 into a numerical optimiza-

tion problem. 

Proposition 6. Under the conditions of Proposition 5, 

we find that  is the solution of 

 (12) 
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The proof can be found in [11]. The solution (12) is very 

noise sensitive due to the constraint . In practice, we 

may expect that the measured sampled impulse response 

computed from the FRF is noisy. Hence, we solve the 

Ridge regression problem which relaxes the constraint 

. As a result, we solve  

 (13)  

where  denotes the vector containing the samples  

and  the standard deviation of the measurement noise. It 

is well known that the Ridge regression allows an analyti-

cal solution through a weighted least squares approach 

[14]. 

5. NUMERICAL EXAMPLES 

In this section, we consider two examples. One is an ex-

tension of the toy example used in Fig. 1 to the case 

 with different fractional orders. The second exam-

ple is a known fractional system “Randle’s model for 

electrical batteries”. 

5.1 Fractional order pole model 

Consider the following fractional system of type (1) with 

, , , 

 and  and corres-

ponding fractional multiplicities ,  and 

. Note that the resonances are harmonically 

related. The system is commensurate with . 

The system is excited by a band-limited zero-mean 

white Gaussian noise sequence in the band kHz with 

a unit standard deviation. As a result, the excitation and its 

response to the fractional system is sampled at a rate 

kHz satisfying Nyquist’s criterion. A total record 

of  samples were gathered. 

The selected basis for the TF analysis was w.r.t. equa-

tion (11) equal to  and . The optimization 

(13) was performed with  (this number 

was established to obtain the best fit). Once the TF coeffi-

cients have been estimated through (13), we extract from 

(11) the various terms per Fourier basis given by 

 (14)  

where the sum represents the exponential and fractional 

polynomial damping. For each function in (14) we com-

pute its Fourier spectrum through the discrete Fourier 

transform and plot its magnitude spectrum as a function of 

the Fourier basis index  as illustrated in Fig. 4. The plot 

reveals three sub-systems corresponding to different basis 

functions. The intersections with the diagonal line shows 

the resonance frequency of each sub-system as can be 

read from the vertical axis. The actual Fourier spectrum 

can be computed from Fig. 4 as the sum over all Fourier 

basis indices which sum all subsystems. Since the TF 

spectrum is a sparse representation as a function of the 

Fourier basis index, we can extract these basis indices 

corresponding to the three vertical lines w.r.t. the positive 

side. These three lines can be redrawn in a magnitude plot 

where the corresponding vertical axis in the TF spectrum 

becomes the horizontal axis and the intensity of the TF 

spectrum the vertical axis. In Fig. 2 the three significant 

vertical lines of the TF spectrum are shown each corres-

ponding to a fractional subsystem. The sum of the TF 

spectrum over the different Fourier basis functions (Ma-

genta curve) reveals a good match to the obtained FRF 

(cross markers). 

On top of that, we know that the sub-systems are of 

fractional order as we selected . It is not possible 

to know the exact fractional order of the sub-systems 

present but the commensurate order can be derived. In-

deed, selecting an incorrect fractional order  renders the 

TF spectrum completely noisy. This can be explained by 

the optimization (13): minimizing the squares of the coef-

ficients implies a sparse representation. The sparse repre-

sentation is only feasible if the correct TF basis is se-

lected, otherwise the coefficients are fit but none are really 

significant. Note however that the sum of the TF spectrum 

over the Fourier basis functions still results in the same 

magenta curve as in Fig. 2 due to the constraint in the 

optimization. The subsystems however lose their meaning 

and significance. It remains an open question how the 

commensurate order  can be selected automatically. 

Fig. 4. Taylor-Fourier spectrum for Fig. 3. Taylor-Fourier spectrum for 
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5.2 Randle’s circuit 

Randle’s circuit describes the impedance of an electrical 

battery and is often used in electrical impedance spectros-

copy. The fractional diffusion component is due to the 

constant phase element replacing the double layer capacit-

ance in the circuit. Randle’s transfer function is given by 

 (15)  

with common values (see [15]): 

. We simulated (15) 

with a band-limited Gaussian noise voltage excitation in 

the band [0,1]Hz. The signals were sampled at a rate of 

Hz and a total record of  was considered. 

Note that the system (15) is not of the type (1), nor 

does the commensurate order satisfy the condition set by 

Proposition 4. Thus this example is challenging and re-

veals the robustness of the proposed methodology to de-

viating scenarios. The TF spectrum with a commensurate 

order of  was computed in Fig. 5. The spectrum 

reveals a significant contribution spread around Fourier 

basis . This is in agreement with the FRF reveal-

ing a resonance around Fourier bin 100. Due to the viola-

tion of fractional type (1) the TF spectrum is less sparse. 

Nevertheless, the TF spectrum for  reveals only 

noise without even a clear significant region. Thus we 

conclude that the TF analysis provides fractional insight in 

a broad class of fractional systems. 

 

6. CONCLUSION 

In this paper, we revisited Taylor-Fourier analysis known 

from power system analysis. We conducted a thorough 

study of its foundations in functional analysis to apply this 

analysis with a fractional order basis to fractional order 

systems. We introduced the novel  TF spectrum which 

provides fractional insight in the behavior of the system 

studied. The TF spectrum exhibits interesting properties 

both from a mathematical viewpoint and a computational 

viewpoint as fractional insight is obtained without para-

metrically modeling the fractional system’s transfer func-

tion.  
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