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ABSTRACT

The nonlinearity inherent in the time difference of arrival
(TDOA)-based source localization problem leads to bi-
ased source location estimates. The estimation bias of the
closed-form TDOA-positioning technique,two-stage least
squares(TSWLS) technology was established analytically in
previous works. This paper extends the theoretical develop-
ments in the case where there exists no sensors location errors
to investigate the bias of TDOA-positioning in the presence of
sensor location errors. Specifically, the estimation bias of the
algebraic two-stage TDOA localization algorithm proposed
is derived. Simulations validate the obtained theoretical re-
sults. It is shown that different from the findings in previous
works where the estimation bias of the two-stage solution
mainly comes from its Stage-1 processing, both stages of the
localization algorithm considered in this work can introduce
significant estimation biases when sensor location errors are
present.

Index Terms— time difference of arrival, bias analysis,
source localization, sensor location error

1. INTRODUCTION

Source localization using time difference of arrival (TDOA)
measurements has been extensively studied under diverse ap-
plication scenarios such as radar [1] and wireless sensor net-
works [2]. The TDOA measurements are nonlinearly related
to the source location and this could lead to the presence of
bias in the source location estimate. When an approximately
efficient TDOA localization algorithm is used and the TDOA
noise is small, the localization bias would not make the local-
ization mean square error (MSE) deviate evidently from the
Cramer-Rao lower bound (CRLB). But the localization bias
can limit the performance of e.g., the source tracking [3].
Due to the low computational complexity and the proven
approximate efficiency, the two-stage localization algorith-
m [4] is perhaps one of the most popular TDOA position-
ing techniques. It estimates the source location and a nui-
sance parameter in its Stage-1 processing while Stage-2 re-
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fines the source location estimate. Both stages requires the
use of closed-form weighted least squares (WLS) technique
only. The original two-stage method was recently general-
ized to the scenario where the sensor locations are subject
to random errors [5,6]. The newly obtained two-stage solu-
tion inherits the advantages of being closed-form, not requir-
ing proper initialization as in the iterative method and hav-
ing lower computational load than e.g., the constrained total
least squares (CTLS) algorithm [7] and the multidimension-
al scaling (MDS)-based method [8]. [9] examined the bias of
two-stage WLS algorithm in the case where there is no sensor
position errors. In [9], the estimation bias of the original two-
stage algorithm [4] has been derived using the second-order
perturbation analysis. It is found that the Stage-1 processing
is the major source of the final localization bias in this case.
As a result, the BiasRed and the BiasSub methods were pro-
posed to mitigate the localization bias. In particular, the Bias-
Sub technique reduces the localization bias via subtracting an
estimated version of the bias from the localization result.

It is purpose of this paper to extend the bias analysis
framework developed in [9] to the case where sensor location
errors are present. Specifically, we shall derive the estimation
bias of the two-stage solutions newly proposed for TDOA-
positioning in the presence of sensor location errors. The
obtained bias result can be used to establish bias mitigation
techniques such as the BiasRed method in [9]. The theoret-
ical developments will be verified by simulations. We shall
also show that in the presence of sensor location errors, both
processing stages of the considered localization algorithm
would contribute significantly to the final estimation bias.

2. ALGORITHM OVERVIEW AND BIAS ANALYSIS

In this section, we shall first introduce the symbols and nota-
tions. We then summarize the two-stage algorithm in consid-
eration and present the theoretical bias analysis.
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2.1. Symbols and Notations

M sensors are located at s¢ = [z2,y?,22]T,i = 1,2..., M.
The sensor locations known to the localization algorithm are
s; = 87+ As;, where As; is the location error of sensor 4.
Defining the sensor location vector as s = [s,sT, ..., sT /|7
and s = s°+ As, where s° = [s¢7, 597, ..., s9%]T and As =
[AsT, AsT, ..., AsT]T. As is assumed to be a zero-mean
Gaussian vector with covariance matrix Q.

TDOAs are measured with sensor 1 as the reference sen-
sor. Define the (M —1) x 1 TDOA measurement vector as r =
[721,731, oy Tar1]T = r°+mn, where r°=[r$;, 75, ..., 791) 7
and n=[na1,n31, ...,npr1)7 is the noise vector modeled as a
zero-mean Gaussian vector with covariance matrix Q;. n is
further assumed to be independent of the sensor location error
vector As.

The true TDOA measurement 3, 1 =2, 3, ...M, is equal
to

ra=r; —ri,ri=|u’ —s7|| 1

where ||#|| denotes the Euclidean distance and u® =[z°, 3, 2°
is the source location to be identified.
2.2. Two-stage Algorithm

Stage — 1 : This stage estimates ¢ = [u°T,#¢]7. The WLS
solution is

@1 = (GIW1G1)"'G{ Wih, ()
where 7§ = [|u® — s1||. W is the weighting matrix equal to
W, = (B1Q;Bi +D1Q.DY)"". (3)

h;, Gy, B; and D; are defined in Section II1.B of [6].

Stage — 2 : Stage-2 explores the relationship between 7
and u® to obtain the final source location estimate. Specifi-
cally, we first find the WLS estimate of ¢ = (u® —s1) ©
(u® —s1) via

o = (GIW,G2) ' GIW3hy )

where Gy, W5 and hy are also defined in [6], and ® is the
Hadamard product [10]. The final source location estimate is

u = I/, + 51 (%)
= diag{sgn(cpl(l :3) — sl)} ©6)

where sgn(x) is the signum function and it is used to avoid
the sign ambiguity due to the square-root operation in (5).

2.3. Bias Analysis

We shall generalize the second-order perturbation analysis de-
veloped in [9] to derive the estimation bias of the two-stage
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localization algorithm presented in Section 2.2. The deriva-
tion starts with evaluating the estimation bias in the Stage-1
processing.

Bias in Stage—1: Subtracting ¢ from both sides of (2)
yields the estimation error of Stage-1, which is equal to

Apy = @1 — @7 = (GTW1G1) T 'G{ Wi (hy — G1¢9).
(7
To evaluate h; — G1¢9, we expand 7§ = ||u® — s¢|| around
the noisy location of sensor 1, s1, using the Taylor-series (TS)
expansion up to second-order terms. We arrive at

1
TR P+ Phos, As1 + 5AslTBAs1 ®)
where B = L (Isxs — pyos, Phos,)- Using the definitions
g , ;
of h; and G1, and applying (8), we arrive at

Ap, = (GTW,G,)'GTW, (N, + N,)
N:=Bin+n®n
N, =D;As+ roAs{BAsl + N;
AsT Asy + AsT Asy (€))
. AsT As; fAsgAsko,
AsT As; +' ASEASM

where N; and N denote the error terms due to TDOA mea-
surement noise n and sensor location error As, respectively.
Evaluating the expectation of A, in (9) gives the estima-
tion bias of Stage-1. Let A, , = (GT W1G1) 'G{ W N;
and Ap, , = (GTW1G1)'GT W N; such that Ay, =
Ay, + A, . Taking expectation of Ay, , yields [9]

E[A‘pl,t] = Hl(qt + 2QtB1H1(47 :)T)

0
) GOTW Go —1 3x1
+H2AGCT WiG) | W (GeH, — DB1Q))
(10)
where
H; = (G{"W;G9))'GTW, (11)

tr() denotes the matrix trace and G is the noise-free version
of G1 (see the definition of G¢ below). H; (4, :) represents
4th row of the matrix H;. q; is a column vector formed by the
diagonal elements of Q;, the covariance matrix of the TDOA
measurement noise vector n (see Section 2.1).

We proceed to evaluate E[A¢p, (] to find E[A¢p,]. For
notation simplicity, let P; be G{ W1 G and A, _ becomes

Ap, , =P'GI W N,. (12)

We express G as

G =G+ AGx (13)
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where

(Asy — Asy)T

(ASg — Asl )T

AGy=-2[A; n] A= , . (14

(Asys _ Asy)T
With the help of (13), P can be re-written as
P, ~ P¢+ AP, P = GSTW,G¢ (15)
AP; = GSTW,AG, + AGTW,G¢ (16)
where AGT'W;AG; has been ignored because multiplying
it with N, would lead to the third and higher-order noise

terms. Under small TDOA noise and small sensor location

errors, we have from the Neumann expansion [10]
P'~(I-P AP, P! -
~(I-PotAP,)P L

Using (17) and (13) in (12), and keeping up to second-
order error terms lead to
Asol,s =~ HlDlAS + H1N1 + leOAslTBAsl
+ P 'AGTW, D, As — PY'AP H D, As
(18)
where N is defined in (9). We shall evaluate the expecta-
tion of each summand on the right hand side of (18) to find

E[A¢g, (]. In particular, applying the fact that the sensor lo-
cation error vector As has zero mean and a covariance matrix

equal to E[AsAs”] = Q,, we have
E[H;D;As] = (19)
E[H;r’AsIBAs ] = Hir’tr(B- Q4(1:3,1:3))  (20)
EHiNi)=H; [L(y-1)x1 Inv-1]-as 21

where q; is a column vector formed by the diagonal elements
of Q5. Let My = WDy, m; = 3(] — 1) + 1 and n; = 37,
2 < j < M. We have

EP{ 'AGTW, D, As] = —2P¢ ! ﬁ)?} (22)
M
Ay = (Qs(m;ing,:) — Qu(1:3,:))Ma(j—1,:)7.
j=2
(23)
Applying the definition M3 = (H;D;)(1 : 3,:), we obtain
E[HlAGlHlDlAS] = —2H1N3 (24)

tr(Ms(Qs(:,4:6) — Qs(:,1:3)))
N — £ (M (Qu (s m; < 1) — Qo1 3))

S 1) 41:3M) - Qu(1:3))
(25)

tr(Ms(Qs(:, 3(M
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Finally, let My = W1 G{H;D; and it can be shown that

EP{'AGTW,GSH, D As] = —2P¢! [‘%3} (26)
M

Az => (Qu(m;ing,:) — Qu(1:3,:)Ma(j—1,:)7.
j=2

27

Taking expectation on both sides of (18) and substituting (19)-
(21), (22), (24) and (26) yield the desired E[A¢p; ,]. Com-
bining the obtained result with (10) gives the estimation bias
from Stage-1 processing of the TDOA localization algorithm
in Section 2.2, which is equal to

ElAp] =

Bias in Stage—2: Similar to the derivation of (7), we sub-
tract both sides of (4) by ¢§ and use definitions of hy and Go
to arrive at

(G W2Gs) 'G5 Wi (hy— Gaw))

= (G5 W2Gs) 'GE W2 (BoAp, +Ap; © Agp).
(29)

E[Ap, ]+ E[Ap 4] (28)

Apy =

The above functional form of the Stage-2 estimation error
A, reflects the propagation of the estimation bias from
Stage-1 to Stage-2 of the TDOA localization algorithm.

From [6], we know that G is a constant matrix but the
matrices B2 and Wy contain noise, due to that ¢; and G;
are noise-contaminated. It is also worthwhile to point out that
the location error in s; has been taken into account when for-
mulating the Stage-1 unknown vector ¢§ = [u°T,#¢]7. Asa
result, s; should be considered noise-fiee when deriving the
estimation bias of Stage-2 processing.

We shall follow the procedure in [9] to derive the bias of
the Stage-2 processing, which is E[A,]. In particular, it can
be shown that

E[Ap,] ~ Ha(c1 + BSE[Ap,]) (30)
+ PS5 'GTE[AW,P3BSAp, ]
where
H,=(GIW3G,) 'GIwWy (31)
P3;=I-G,H,, PS = GIW3G, (32)

and c; is a column vector formed by the diagonal elements of
P!, AW, is defined as

AW, ~ By AP, B ' —-BS 'AB,W5 - W3AB,BS !
(33)
such that Wy = W9 + AWy, where

W =By 'P{By !
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AB, = 2diag{A¢, }
. S1
and B§ = 2d1ag{go§ o
We next evaluate E[AW3P3B3Ap,] to find E[Aep,).
For the clarity of the presentation, we express it as

E[AWQPngAQDl] =a+ 5 + 7. (34)

Let Py = Bg’ngBngBl. As a result, o can be shown to
be equal to

a = E[By 'AP1BY 'P3BsAp, ]

i . (35)
= 72B2 ! <A4+ |:tr(W1G§P4Qt):| >

where the matrices A4 and A5 are defined as

A, = E[G{"W,AG, By 'P3B5Ay, |
=GYTW1QiP4(4,)" + G Wi x
tr(Ms(Qs(:,4:6) — Qs(:,1:3)))

(M (Qa (s, my 1) — Qa1 3)))

£ (M (Qq (5, 3(M — 1)+ 1: 3M) — Q (5,1 : 3)))

(36)
and
M
As = Z(Qs(mj nj,:) — Qs(1:3,:))Mg(5—1,:)" (37)
j=2
Here, M5 = (BS 'P3B$H;D;)(1 : 3,:) and Mg =

W,G{BS 'P3;BSH;D;. The definitions of m; and n;
can be found above (22). 5 and ~y are equal to [9]

8= —E[BS 'AByWIP3B3Ap, | = —2B5 'ps 1w
(38)

v = —E[W3AByBS 'P3;BAp, | = —2W35BS 'p;
(39)
where ps 2 and ps are column vectors composed of the di-
agonal elements of W5P5 and Ps, respectively. In particular,

P5 is defined as

P; = P3;BIP7. (40)

Putting (35), (38) and (39) into (34) and substituting the result
back to (30) yield

ElAg,] = Hy ( | ByE[Ag)] +W‘z’_1(a+ﬂ+v)>-
(41)

The estimation bias of the considered TDOA localization
algorithm is, using (5),

E[Au] = B! (—c3 + E[Awy)). (42)
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Table 1. True sensor locations in meters

Sensor No 1 2 3 4 5 6
x? 300 400 300 350 —100 200
ye 100 150 500 200 -100 —300
22 150 100 200 100 -—-100 —200

7

c3 is a column vector formed by the diagonal elements of Cs,
which is the approximate covariance matrix of the localiza-
tion algorithm output u equal to B ' (G3 W3G,)~'BS .
The diagonal matrix B is defined as B3 = 2diag{u®—s; }.
This completes the bias analysis for the algorithm presented
in Section 2.2 for locating a source using TDOA measure-
ments in the presence of sensor position errors.

3. SIMULATION

In this section, simulations are performed to corroborate the
theoretical developments and gain more insights. The con-
sidered localization geometry is the same as [4]. There are
M = 6 sensors whose true locations are summarized in table
1. The source is located at u® = [285 483 209]”'m, which
is close to the sensor array. The covariance matrix of the
TDOA measurement noise vector, Q, is set to be equal to
o?R, where 0? = 10~*m? is the noise variance and R. is a
matrix with all the diagonal elements being 1 and off-diagonal
elements being 0.5 [4]. The covariance matrix of the sensor
location error vector is Qs =023, and o2 has unit m? .

Monte Carlo simulations are conducted. In each ensem-
ble run, the localization algorithm in Section 2.2 is applied to
locate the source. Noisy TDOA measurements and erroneous
sensor locations are produced by adding to the true values
zero-mean Gaussian noise with covariance matrices Q; and
Qs. The localization MSE and the estimation bias from sim-
ulation are evaluated using MSE(1) = Zle (;—u)?/L and
BIAS(11) = || X, (i, —u®)|| /L, where L =10000 is the to-
tal number of ensemble runs. Besides the two-stage method in
consideration, we also simulate the BiasSub method that sub-
tracts an estimated version of the localization bias from the
localization result of the two-stage technique. The estimat-
ed localization bias is found via evaluating (42) by replacing
the unknown true quantities u® and s¢ with the localization
output u and the noisy sensor locations s;.

In Fig.1, we plot as function of the sensor location er-
ror variance o2, the localization CRLB and the localization
MSEs of the two-stage method from Section 2.2 and its
BiasSub-augmented version. It is found that the two localiza-
tion techniques in consideration both attain the CRLB results
approximately when o2 is small.

Fig.2 shows the localization biases of the two-stage
method and the BiasSub technique. We observe that the
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Fig. 1. Localization MSE as function of the sensor location
error variance o2.
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Fig. 2. Comparison of the final localization bias from (42) and
the estimation bias of Stage-1 from (28).

theoretical bias results match the localization bias of the
two-stage algorithm obtained via simulation very well. This
justifies the validity of the bias analysis in Section 2.3. On
the other hand, with BiasSub, the localization bias can be
reduced significantly. We also examine the contribution of
each processing stage to the final estimation bias of the two-
stage algorithm. For this purpose, we include in the figure
the theoretical localization bias of the Stage-1 processing (see
(28)). Also included is the estimation bias of Stage-1 from
simulation. It can be seen that the use of the Stage-2 process-
ing increases greatly the localization bias of the two-stage
method. This observation is different from the result in [9]
where it was indicated that under precisely known sensor
locations, Stage-1 of the two-stage localization method is the
major source of the final estimation bias. Our findings might
be explained by noting that the presence of sensor location
errors increases the localization error of Stage-1, which prop-
agates to the final localization result as estimation bias, due to
the use of the nonlinear squaring and square root operations
in Stage-2 of the two-stage method (see (4) and (5)).
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4. CONCLUSION

This paper derived, via the use of the second-order pertur-
bation analysis [9], the estimation bias of an algebraic two-
stage algorithm [5, 6] that can localize a source using TDOA
measurements in the presence of random sensor location er-
rors. Computer simulations validated the theoretical results.
It was demonstrated that different from the findings of [9],
when the sensor locations are known imprecisely, both pro-
cessing stages of the considered two-stage technique would
contribute significantly to the final localization bias.
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