23rd European Signal Processing Conference (EUSIPCO)

SCALABLE BAYESIAN NONPARAMETRIC DICTIONARY LEARNING

Sarper Sertoglu

Department of Computer Science
Columbia University

ABSTRACT

We derive a stochastic EM algorithm for scalable dictionary
learning with the beta-Bernoulli process, a Bayesian nonpara-
metric prior that learns the dictionary size in addition to the
sparse coding of each signal. The core EM algorithm pro-
vides a new way for doing inference in nonparametric dictio-
nary learning models and has a close similarity to other sparse
coding methods such as K-SVD. Our stochastic extension for
handling large data sets is closely related to stochastic varia-
tional inference, with the stochastic update for one parameter
exactly that found using SVI. We show our algorithm com-
pares well with K-SVD and total variation minimization on a
denoising problem using several images.

1. INTRODUCTION

Sparse coding models decompose a signal into a linear com-
bination of a small subset of signal patterns selected from a
larger dictionary of patterns. The goal of dictionary learn-
ing is to (1) learn the patterns of this dictionary, and (2) learn
the sparse representation of each signal. Since both objec-
tives are performed on data, the learning task is set up such
that both goals are satisfied [1]. Bayesian nonparametric dic-
tionary learning adds a third goal: (3) learn the size of the
dictionary in conjunction with the first two goals. This can be
achieved using the beta-Bernoulli process [2].

The beta-Bernoulli process gives a nonparametric prior
distribution for dictionary learning. It first uses a beta process
to define a measure on an infinite set of randomly generated
dictionary elements. The measure for each element is a “coin-
flip” probability, with the beta process ensuring that the sum
of these infinite number of biases is finite. The Bernoulli pro-
cess corresponds to the infinite process of coin-flips, which
decides which elements are used for a patch — i.e., performs
the sparse coding. The Bernoulli process has the property
that the total number of unique dictionary elements used by
all patches (from among the infinite set) is finite and growing
proportional to the log of the number of patches.

The nonparametric beta-Bernoulli sparse coding model
has proven effective in tasks such as denoising, inpainting [3]
and compressed sensing for MRI [4]. Inference for the beta-
Bernoulli process has focused on a variational approach [2]
and MCMC sampling [3,4]. Scalability was not considered

978-0-9928626-3-3/15/$31.00 ©2015 IEEE

John Paisley

Department of Electrical Engineering
Columbia University

in both cases. We develop a new EM-based algorithm for beta
process factor analysis (BPFA) [2] that we then scale to large
data sets along the lines of other scalable dictionary learning
extensions [5]. We will show that our new EM-based algo-
rithm has features very similar to the OMP step used by K-
SVD [1], while our scalable extension can be viewed as an
EM special case of stochastic variational inference [6]. The
result is a more efficient sparse coding dictionary learning
model based on Bayesian nonparametrics.

In the remainder of the paper, we first introduce the BPFA
model in Section 2. We present a new EM algorithm in Sec-
tion 3, which includes a “selective E-step” to perform sparse
coding, giving an algorithm similar to OMP. In Section 4 we
show experimental results on a denoising problem using sev-
eral standard grayscale images, comparing with K-SVD and
total variation denoising.

2. BETA PROCESS FACTOR ANALYSIS

Beta process factor analysis (BPFA) is a dictionary learning
model for vectors x € R? that: (1) shrinks the dictionary to a
number considered “suitable” according to the posterior dis-
tribution, and (2) performs sparse coding using the remaining
dictionary elements [2]. BPFA is defined using an approxi-
mation to the beta process. For a fixed, large integer K, it
first generates global variables

Wy ~ N(Oan_l'[)v T, ~ Beta (0[%,0((1 - %)) (1)

fork =1,..., K. In the limit X — oo, the random measure
Hg = Z,{,{:l k0., constructed from these random variables
converges to a beta process [7]. The larger the value of K, the
more accurate the approximation; in practice, “large” values
can be on the order of hundreds.

Sparse coding and weighting of a patch then follows

Cn ~ N(O,XT), 2, ~ Bern(my,). (2)

Defining Z,, = diag(zn1,...,2nk) and W = [wy, ..., wk].
the nth observation, x,,, is then

T, ~ N(W Zycpn,0?1), (3)

Nonparametric dictionary learning is enforced by the beta
prior on each 7. The prior on 7 encourages z,; = 0 for

2821

23rd European Signal Processing Conference (EUSIPCO)

each n over many values of k. Sparse coding results from the
values of & for which 7y, is substantial, but still switches on
and off factors. Using a Poisson process analysis of the beta
process (in which K — 00), it can be shown that

#{k o SN | 2 > 0} ~ Pois(CN 20, (@)

while marginally,), 2,1 ~ Pois(7) for each n. The param-
eters a,y > 0 can be used to control these values approxi-
mately for the finite prior above when avy < K and v < K.

3. EM FOR BPFA

In this section, we derive a new MAP-EM algorithm for
BPFA. This is in contrast to the fully variational algorithm
of [2], and fixes sensitivity issues of that algorithm which
make it dependent on a good initialization. The current al-
gorithm will be shown to be similar to K-SVD, which helps
frame BPFA as a Bayesian nonparametric version of it. We
then present a scalable extension of the inference algorithm
using stochastic optimization.

3.1. An EM algorithm

Our goal is to maximize p(x, z, W), the marginal joint likeli-
hood over the sparse coding vectors z,, and the dictionary W,
with integration over c¢,, and ;. We perform EM using the
variables ¢,, and 7;, as hidden data. The variable c is essen-
tial for a fast closed form update of W, but can be a nuisance
when optimizing z. We therefore would like to select dimen-
sions of c to integrate over when optimizing z. To this end,
we present a “selective EM” algorithm similar to those found
useful in other models needing selective marginalization [8].

Notation: For an index set A C {1,..., K}, we write
c4 to denote the subvector of ¢ formed by the dimensions
indexed by A and W 4 to denote submatrix of W formed by
selecting the columns of W indexed by A. We again let Z,,
be the matrix formed by putting the vector z,, on the diagonal.
The identity matrix [is always assumed to be the appropriate
size, as defined by the other matrices in the equation.

3.1.1. Sparse coding EM steps

The sparse coding step entails updating each z,, with c,, serv-
ing as the hidden data in EM. The EM algorithm is flexible in
that we can selectively integrate over the “inconvenient” sub-
sets of dimensions of ¢,, when performing the E-step. This
can have computational benefits as we will show, and results
in an algorithm similar to OMP [1].

Given W and ¢(7y,), the update of each z,, is independent.
Therefore, to make the indexing more clear we focus on a
particular observation x,, in this section and ignore the index
n. The following sparse coding procedure is independently
run for each n. For a particular x and value of W, the sparse
coding EM steps update z as described in Algorithm 1.

Algorithm 1 Sparse coding EM steps

Input: All (7)) = p(7k|21, ..., 2n) = Beta(ag, bi.), where

ar =ag + 3, 2k, e =a(l—)+ >, (1 — zu).
for each patch do steps 1-3 below
1. Setz = 0 and index set A = {).
2. For all j, set 5;.’ =Inp(z|W,z; = 1) + Ey[ln7,],
§; =Inp(z|W,z; = 0) + Eg[In(1 — m;)].
3. while max; & — &, > Oiterate (a)—(d) below

J

(a) Setj' =argmax; £ —&;. (SeeEq. 12)
(b) Augment A < AU {j'}. Set zjy = 1, £}, = —o0.

(¢) Setq(ca) = plcalz,z,W) = N(calpa, X), where
Ya= N +WIWa/oH) ™, s =S aWha/o?.
(d) Forallj & A, set
€ = Bylnplelea, W, = 1)] + Bylln],

& = By[lnp(zlea, W,z = 0)] + Ey[ln(1 — 7).

After sparse coding each patch, move to Section 3.1.2.

The hidden data ¢ and 7, each involve their own condi-
tional posterior ¢ distributions. As Algorithm 1 shows, we
start with z = 0 and sequentially incorporate new dimensions
similar to OMP. Given an index set of active dictionary ele-
ments A, we form the E-step by calculating

Q(z,24) = Eq[Inp(z, z|ca, W, m1.£)]. (5)

The ¢ distribution is on {m1.x, ¢4 }. Since these variables are
independent given W, ¢ automatically factorizes in the same
way as their conditional posterior,

q(m1:x,ca) = q(ca) I, a(mr), (6)

where ¢(m;) = Beta(ag,br) and g(ca) = N(pa,X4) as
indicated in Algorithm 1.

Similar to OMP, we sequentially add dimensions of c,
scoring each dimension to determine which (if any) to add.
The score for dimension j is denoted 5;' — & in Algorithm
1. This is the difference of the expected log likelihoods of an
“on” or “off” setting. A value > 0 indicates that Q(z, z.4),
and therefore the marginal likelihood, can be increased by
setting z; = 1. We select the maximum over j to greedily
maximize Q(z, z4), as similarly done with OMP.

The expectations over ¢ required for these scores are:

Ey[lnm;] = ¥(a;) —(a; +b;), @)
Ey[In(1 —7;)] = (bj) — (a; + bj), ®)

where 1(+) indicates the digamma function. These are com-
puted using the conditional posterior of 7; from the previous

2822

23rd European Signal Processing Conference (EUSIPCO)

iteration, and not after updating each z. The likelihoods used
in these scores are

plxlea, W, z; =1) =
p(xlea, W, z; = 0) =

N(z|Waca, oI + X" w, w; 9
N(z|Waca, o*I). (10)
Using the matrix inversion equality,

ijjT/O'2

2 —1 o T\—1 2
I+ 23 'wjw!)M =072 — ——L——
(o i) 7 Ao? +w]w,

J

;3D

we can simplify §;f — & . Using the current g(;) and g(c.),
define the residual as r 4 = © — W4 4. Then

1 (7;411)])2 1 w;‘FWAZAW:{wJ—

EF—¢ = VAT
J J 202 \o2 + w w; 202 \o2 + w]ij
1 w] w;
—5hn (1+ -)+¢(aj) —(by). (12)

We observe that the first term is very similar to the correlation
score used by OMP, which greedily selects the next vector to
minimize the residual. The following two terms in Eq. (12)
relate to the probabilistic structure of EM. The final differ-
ence of digamma functions corresponds to the (approximate)
nonparametric beta process penalty. This value will be very
negative for low-probability dictionary elements, as learned
through inference. It therefore eliminates these dictionary el-
ements from the model by shrinking scores to negative values.

3.1.2. Dictionary EM steps

With sparse coding EM, we recalculate the E-step using a new
q(c4) after turning on a dictionary element. EM for the dic-
tionary W is more straightforward in that it involves one E
and one M step. (Below, recall that Z,, = diag(Z},).)

E-Step: The full conditional posterior of the entire vector ¢,
is q(cn) = N(en|pn, 2n), where
»lo= M+o2Z2,W'WZ,,
tn = S.(WZ)'x,/0% (13)
We use these posteriors to calculate the expectation of the
complete-data log likelihood,

N
= Z IEq [hlp(.fn, chna Zn)]

n=1

QW, Wa)

We observe that this part does not involve g(7y). This expec-
tation is equal to

N
1
Q(W W)ld) = 202 Z ”xn WZnNn”Q

1
~ 5.2 Z trace(X, Z, WIW Z,,)
n=1

— gtrace(WTW) 4+ const. (14)

M-Step: We update W by maximizing () in Eq. (14),

N
W = lz a:n;LZZn

n=1

-1

N
no’l + Z Zn(,unuf +3,)2Z,

n=1

15)
We then return to sparse coding EM to update each z,, and
iterate until convergence.

3.2. Scalable EM

When there are many vectors to sparsely code, this procedure
can take a long time. Therefore, we extend our inference al-
gorithm to the stochastic setting to make it scalable. Using
dummy variables, stochastic optimization takes an objective
of the form

N
L=MWp(B) + Y p(wn, ¢nlB) (16)

and at step ¢ selects a subset of (z,, ¢,) indexed by C} to
create a temporary objective function,
Ly =np(B) > Inp(za,éulf). (A7)

neCy

ICI

The local variables ¢,, are then optimized for n € Cj (¢
corresponds to z and the parameters of ¢(c) here), and the
global variables 3 are updated with a stochastic gradient step
taken over £; (8 corresponds to W and the parameters of g(7)
here). Using a new random subset C; for each ¢, this method
is proven to converge to a local optimum of £ under step size
conditions discussed at the end of the section [9].

3.2.1. Stochastic learning for W

The update of W in Eq. (15) can be framed as a gradient step
on Q(W, W,,) of the form

WD =W 4 p (-VEQ) ' Vi@ (18)

in which p; = 1. This results from the Gaussian form of W,
and so the full Newton step moves directly to the solution.
Stochastic optimization for W involves a stochastic gradient
step. Using the standard setup of stochastic optimization [9],
and selecting the preconditioning matrix to be the negative
inverse Hessian calculated only over the subset C;, we have
the convenient update

B, = 770'2|C]\';‘]_|_Enec "(u,mun +30)Zn,
w, = (ZnGCt ngZZn)B;17
WD = (1=)W p, W] (19)

In other words, first find the optimal update of W restricted
to subset C; (using the scaling factor N/|Cy|),
weighted average of this update with the current values.

2823

23rd European Signal Processing Conference (EUSIPCO)

3.2.2. Stochastic learning for my,

Stochastic inference for each 7 follows precisely SVI [6].
This results from the fact that variational inference reduces to
EM when the variables integrated out of the model are con-
ditionally independent. We thus use the natural gradient of
parameters (ay, by) to update g(7;) = Beta(ag, by) exactly
as derived using SVI. Atstep ¢, for k = 1,..., K first set

/o ay N
a, = T+ 15,7 Lnec, Znk>

b = a(l = %)+ &7 Lnec, (L= 2ar). (20)

This focuses on sparse coding of the data in C;. Then set

o™ = (1= p)a) + peaf,
B = (1= p)b? + b, @1

To ensure convergence, the stochastic updates to W and g(7,)
require that Y ,o, p = oo and Y ;o p7 < oo [9]. We set
pe = (to +t)7", where to > 0 and x € (3, 1].

4. EXPERIMENTS

For our experimental evaluation we consider a denoising
problem using five images: “peppers,” “Lena,” “house,’
“boat” and “Barbara.” To each image we add white Gaussian

noise with standard deviations o € {5, 10, 15, 20, 25, 50, 100}.

For BPFA and K-SVD, we extracted 8 x 8 patches from each
image using shifts of one pixel. We ran stochastic BPFA
using the following settings: 7 = 1/255%, A\ = 1/10, a = 1,
v =1, K = 256, |C;| = 1000, t, = 10, x = 0.75 for a total
of 300 iterations. We use the algorithm described in [11] to
set the value of the noise variance 2.

We compare our algorithm with K-SVD [1] and total vari-
ation denoising [10]. For K-SVD we use the standard settings
of the code provided by [1] and use [11] to set the noise pa-
rameter (K = 256). For total variation, we consider both
the isotropic and anisotropic versions. To set the regulariza-
tion parameter, we adaptively modify its value until the re-
sulting denoised image has empirical noise variance equal to
the value found using [11]. Therefore, all algorithms are com-
pared under the same noise assumption (which is close to the
ground truth).

In Table 2 we show quantitative results using the SSIM
and PSNR performance measures [12]. For the first four im-
ages, we also show these values using the noisy image as a
baseline. The performance of BPFA is competitive with K-
SVD, and significantly better than total variation denoising.
We notice that in several cases (e.g., “Lena”), the PSNR of
K-SVD is better, while the SSIM of the same reconstruction
favors BPFA, suggesting that the added regularization of the
BPFA prior can improve visual quality. Dictionary learning
using BPFA took approximately 3.5 minutes per image (tak-
ing 300 steps with |C}| = 1000), followed by an iteration over
the full image for reconstruction.

0.8751

0.87|

0.865

SSIM

red : stochastic

oser blue : batch (20K)

osssl] L L l L l 4
1 15 2 25 . 3. 35 . 4 45 5 55
running time (minutes)

(a) SSIM vs running time for “house” (o = 15).

0.06¢
0051
0.04
0.03¢
0.02
0.01H
0 e A

(c) BPFA dictionary probabilities for Fig. 1(b). (With noisy image inset)

Fig. 1. Some example results.

In Figure 1(a) we show an example of SSIM vs running
time over 500 steps of stochastic inference. For comparison,
we subsampled 20,000 patches and ran batch inference for
dictionary learning on the same image. (Both functions show
the SSIM after running an iteration over all patches in the
image, which wasn’t factored into the running time.) We see
a computational advantage to stochastic inference, which can
converge on a reconstruction faster than batch inference.

In Figure 1(b) and 1(c) we show an example reconstruc-
tion and distribution on the learned dictionary (the “coin-flip”
biases). The model pruned 41 of the 256 dictionary elements
and learned a distribution that promotes sparsity on the re-
maining elements. The visual results of BPFA and K-SVD
are similar, but there is a noticeable visual improvement over
TV denoising. In Table 1 we show the average number of
dictionary elements per patch for BPFA and K-SVD for two
images (discounting a shift element always used by BPFA).
Sparsity is similar, which is not surprising given the similar-
ity of OMP and our sparse coding EM step.

Table 1. Dictionary elements per patch for BPFA/K-SVD

image o=5 o0=10 o=15 0=20 o=25
pepp. 6.5/6.2 3.3/27 1.7/1.5 1.2/1.0 0.9/0.7
boat 7.3/6.7 3.3/2.6 1.6/14 1.0/09 0.7/0.7

2824

23rd European Signal Processing Conference (EUSIPCO)

Table 2. SSIM | PSNR for five different grayscale images as a function of noise standard deviation.

PEPPERS

oc=5

oc=10

oc=15

oc=20

o=25

o =150

o =100

BPFA
K-SVD
TV (aniso)
TV (iso)
Baseline

0.947 | 37.40
0.949 | 37.73
0.938]35.73
0.938 | 35.85
0.885 | 34.16

0.92234.15
0.923 | 34.20
0.903 | 32.40
0.905 | 32.56
0.718]28.15

0.900 | 32.14
0.900 | 32.18
0.872 | 30.44
0.875 | 30.59
0.584 | 24.61

0.881 | 30.83
0.879 | 30.79
0.850 | 29.25
0.853 | 29.42
0.485 | 22.09

0.860 | 29.72
0.856 | 29.63
0.828 | 28.26
0.832 | 28.40
0.411[20.17

0.782 | 26.48
0.766 | 26.14
0.744 | 25.37
0.751 | 25.48
0215 | 14.12

0.667 | 23.15
0.613 | 21.93
0.636 | 22.78
0.649 | 22.89
0.086 | 8.170

LENA

oc=15

=10

oc=15

oc=20

o=25

o =150

o =100

BPFA
K-SVD
TV (aniso)
TV (iso)
Baseline

0.940 | 38.27
0.937 | 38.27
0.917 | 35.92
0.917 | 35.95
0.855 | 34.15

0.91035.37
0.906 | 35.39
0.874 | 32.71
0.874 | 32.78
0.646 | 28.14

0.884 | 33.58
0.881 | 33.69
0.841 | 30.96
0.843 | 31.04
0.493 | 24.61

0.863 | 32.27
0.859 | 32.40
0.816 | 29.84
0.818 | 29.93
0.390 | 22.12

0.845[31.28
0.840 | 31.40
0.793 | 28.87
0.796 | 28.98
0.318]20.19

0.759 | 27.97
0.748 | 27.99
0.725 | 26.47
0.731]26.57
0.145| 14.14

0.634 | 24.46
0.600 | 24.39
0.650 | 24.36
0.661 | 24.50
0.052 | 8.141

HOUSE

oc=>5

c=10

oc=15

oc=20

oc=25

o=150

o =100

BPFA
K-SVD
TV (aniso)
TV (iso)
Baseline

0.934] 38.16
0.948 | 39.41
0.916 | 36.86
0.915 | 36.82
0.841 | 34.16

0.906 | 35.81
0.902 | 35.98
0.874 | 33.76
0.873|33.72
0.627 | 28.12

0.875 | 34.16
0.870 | 34.27
0.847 | 31.89
0.846 | 31.85
0.481 | 24.63

0.853 | 33.16
0.850 | 33.21
0.831 | 30.76
0.831 | 30.73
0.387 | 22.15

0.83732.01
0.833 | 32.04
0.817 [29.91
0.819 [29.96
0.319|20.13

0.767 | 28.53
0.739 | 28.15
0.753 | 27.04
0.762 | 27.12
0.161] 14.13

0.621 | 24.03
0.559 | 23.63
0.638 | 23.90
0.654 | 24.01
0.062 | 8.110

BARBRA

oc=5

c=10

o=15

oc=20

o=25

o =150

o =100

BPFA
K-SVD
TV (aniso)
TV (iso)
Baseline

0.949 | 37.15
0.957 | 38.09
0.936 | 34.17
0.936 | 34.18
0.894 | 34.14

0.929 | 34.32
0.930 | 34.45
0.877 | 29.77
0.877 | 29.77
0.739 | 28.13

0.907 | 32.40
0.908 | 32.47
0.820 | 27.49
0.822 | 27.50
0.614 | 24.63

0.887 | 30.95
0.882 | 30.94
0.770 | 26.00
0.773 | 26.01
0518 |22.13

0.861 [29.71
0.855 | 29.70
0.728 | 25.07
0.734 | 25.12
0.444 | 20.18

0.73225.76
0.722 | 25.68
0.609 | 22.96
0.618 | 23.02
0.227 | 14.15

0.528 | 21.75
0.524 | 21.88
0.525]21.62
0.535]21.70
0.086 | 8.142

BOAT

oc=15

=10

=15

oc=20

o=25

o =150

o =100

BPFA
K-SVD
TV (aniso)
TV (iso)

0.934] 36.76
0.935 | 37.11
0.910 | 35.19
0.909 | 35.15

0.887 | 33.54
0.881 | 33.53
0.849 | 31.64
0.847 | 31.57

0.850 | 31.71
0.841 | 31.68
0.802 | 29.79
0.799 | 29.71

0.818 | 30.39
0.805 | 30.37
0.762 | 28.50
0.759 | 28.43

0.787 | 29.36
0.773 | 29.31
0.730 | 27.57
0.728 | 27.51

0.670 | 26.13
0.658 | 26.08
0.634 | 25.17
0.637 | 25.18

0.519]22.88
0.501 | 22.83
0.525 | 22.81
0.531 | 22.83

(1]

(2]

(3]

(4]

(5]

REFERENCES

M. Aharon, M. Elad, A. Bruckstein and Y. Katz. K-SVD:
An algorithm for designing of overcomplete dictionaries for
sparse representation. IEEE Transactions on Signal Process-
ing, vol. 54, pp. 4311-4322, 2006.

J. Paisley and L. Carin. Nonparametric factor analysis with
beta process priors. International Conference on Machine
Learning, 2009.

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D.
Dunson, G. Sapiro and L. Carin. Nonparametric Bayesian dic-
tionary learning for analysis of noisy and incomplete images.
IEEE Trans. Image Process., vol. 21, no. 1, pp. 130-144,2012.

Y. Huang, J. Paisley, Q. Lin, X. Ding, X. Fu and X. Zhang.
Bayesian nonparametric dictionary learning for compressed
sensing MRI. IEEE Transactions on Image Processing, vol.
23, no. 12, pp. 5007-5019, 2014.

J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online learning

for matrix factorization and sparse coding. Journal of Machine
Learning Research, vol. 11, pp. 19-60, 2010.

(6]

(7]

(8]

(9]

[10]

(1]

[12]

2825

M. Hoffman, D. Blei, C. Wang and J. Paisley. Stochastic vari-
ational inference. Journal of Machine Learning Research, vol.
14, pp. 1005-1031, 2013.

J. Paisley and M. Jordan. A constructive definition of
the beta process. Technical Report, 2015. (in preparation)
www.columbia.edu/~jwp2128/PaisleyJordan2015.pdf

Z. Ghahramani and G. Hinton. The EM algorithm for mixtures
of factor analyzers. Technical Report CRG-TR-96-1, 1996.

L. Bottou. Online learning and stochastic approximations. In
Online Learning in Neural Networks, CUP, Cambridge, 1998.
T. Goldstein and S. Osher. The split Bregman method for L1-
regularized problems. STAM Journal on Imaging Sciences, vol.
2, no. 2, pp. 323-343, 2009.

X. Liu, M. Tanaka and M. Okutomi. Single-image noise level
estimation for blind denoising. IEEE Transactions on Image
Processing, vol. 22, no. 12, pp. 5226-5237, 2013.

Z. Wang, A. Bovik, H. Sheikh and E Simoncelli. Image quality
assessment: From error visibility to structural similarity. [EEE
Trans. on Image Processing, vol. 13, no. 4, pp. 600-612, 2004.

