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ABSTRACT

In this paper, we propose a relevance vector machine (RVM)
for modeling and generation of a speech feature sequence. In
the conventional method, the mean parameter of the hidden
Markov model (HMM) state can not consider temporal cor-
relation among corresponding data frames. Since the RVM
can be utilized to solve a nonlinear regression problem, we
apply it to replace the model parameters of the state output
distributions. In the proposed system, RVMs are employed
to model the statistically representative process of the state or
phone segment which is obtained from normalized training
feature sequences by using the semi-parametric nonlinear re-
gression method. We conducted comparative experiments for
the proposed RVMs with conventional HMM. It is shown that
the proposed state-level RVM-based method performed better
than the conventional technique.

Index Terms— HMM, RVM, speech synthesis, acoustic
modeling, parameter generation

1. INTRODUCTION

In the hidden Markov model (HMM)-based speech synthesis
system, the speech parameter generation algorithm [1] is used
to generate spectral and excitation parameters from HMMs
to maximize their output probabilities under constraints be-
tween static and dynamic features. The statistical averag-
ing in the modeling process improves robustness against data
sparseness, and the use of dynamic-feature constraints in the
synthesis process enables us to generate smooth feature se-
quences. However, the synthesized speech signal sounds evi-
dently muffled compared to natural speech. This drawback
comes from the reason that the generated feature trajecto-
ries are often over-smoothed, i.e., detailed characteristics of
speech parameters are eliminated in the modeling stage and
cannot be recovered in the synthesis stage.
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To obtain better acoustic models, several techniques have
been proposed such as trajectory HMM [2], autoregres-
sive HMM [3], and the minimum generation error criterion
(MGE) [4]. Although using the advanced acoustic models
may increase modeling accuracy, it does not recover the over-
smoothing problem in the synthesis algorithm. Post-filtering
in the synthesis stage is the simplest way to compensate for
over-smoothing. Using this method, the muffled sound of
synthesized speech can be reduced. Speech parameter gener-
ation considering global variance (GV) [5] is one of the most
widely used methods to alleviate the over-smoothing prob-
lem. Using GV, the dynamic range of generated trajectories
is made close to those of natural ones. This method can be
viewed as a statistical post-filtering technique to a certain ex-
tent. Although these generation techniques work better than
the conventional, the resulting synthetic speech sounds more
artificial. Recently, advanced machine learning techniques
have been adopted to statistical parametric speech synthesis
such as deep neural networks (DNN) [6, 7], and Gaussian
process (GP) regression [8]. However, they require a large-
size training data set, or spend expensive computational cost
and a large amount of resources compared to the conventional
method.

In this paper, we propose a feature sequence modeling and
generation method using relevance vector machines (RVM)
[9] as an alternative to recover the detailed trajectories of
speech feature. Since the RVM can be employed to obtain a
nonlinear regression, we apply it to replace the model param-
eters of the state output pdfs. In HMMs, it is assumed that
observation sequences corresponding to the same state are
quasi-stationary, and the mean parameter of the HMM state
can not consider temporal correlation among corresponding
data frames. We propose to model the representative trajec-
tory of the state which is obtained from temporally normal-
ized training feature sequences by using the semi-parametric
nonlinear regression method. It is shown that the proposed
method performs better than the conventional parameter gen-
eration algorithm.
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2. PARAMETER GENERATION USING HMM

In this section, we will give a brief review of the conventional
parameter generation algorithm [1]. According to the deci-
sion tree, the sentence model is constructed by concatenat-
ing the states of corresponding clusters to the given context-
dependent labels. After determining state sequence and du-
ration as q = [q1, q2, · · · , qT ]⊤, a sequence of speech fea-
ture C = [c⊤1 , c

⊤
2 , · · · , c⊤T ]⊤ is generated by maximizing the

HMM likelihood:

Ĉ = argmax
C

P (O|q̂,λ) (1)

where λ is the parameter set of the HMM, and O = [o⊤
1 ,o

⊤
2 ,

· · · ,o⊤
T ]

⊤ is an observation vector sequence. Under a con-
straint on the relationship between static and dynamic features
as given by

O = WC (2)

with the weighting matrix W for dynamic feature relation [1],
the problem is reformulated as follows:

Ĉ = argmax
C

P (WC|q̂,λ). (3)

The synthetic speech feature sequence Ĉ is obtained by solv-
ing a linear equation.

Clearly, a state is modeled by time-invariant statistical pa-
rameters. Although they involve temporal dynamics, the gen-
erated feature trajectories are not enough to represent sophis-
ticated characteristics.

3. SPEECH SYNTHESIS USING RVM

We propose speech synthesis using RVM, in which the nor-
malized segments are regarded as observations of a state, and
the mean sequence of the state is obtained by nonlinear re-
gression using RVMs. In this section, the modeling structure,
the training procedure, and the parameter generation method
of the proposed system are given.

3.1. RVM-based acoustic modeling

Typically using the RVM, the output observation on is ap-
proximated by

on = f(xn) + ϵn (4)

=
M∑

m=1

wmϕm(xn) + ϵn (5)

where xn and ϵn denote the input vector and additive noise
of the index n, respectively, and ϕm and wm indicate the m-
th basis function and its weight, respectively. The noise ϵn
is assumed to be i.i.d. following a Gaussian distribution with
zero mean and variance σ2. Although this model is linear in

the parameters, the function f can be highly flexible as the
number of basis set may be very large and the basis function
ϕm is defined by a kernel function:

ϕm(x) = κ(x,xm). (6)

Since most of the weights become zero after sparse Bayesian
learning, the system takes the non-zero weights and corre-
sponding basis functions only.

In order to apply the RVM on acoustic modeling, it should
be extended to a multivariate form [10] in which the output
observation is not scalar but in a vector space:

on =
M∑

m=1

ϕm(xn)wm + ϵn (7)

= Wϕ(xn) + ϵn (8)

where on and ϵn represent the P -dimensional observation
vector and the noise vector of the index n, respectively, W =
[w1,w2, · · · ,wM ] with the weight vector wm of the m-th
basis, and ϕ(x) = [ϕ1(x), ϕ2(x), · · · , ϕM (x)]⊤. We as-
sume that the probability distribution of the noise vector ϵ
is given by

p(ϵn) = N (0,Σ) (9)

with the covariance matrix Σ. Then, we can define a pdf of
observations corresponding a speech segment set by using the
multivariate RVM, in which the output vector on and the input
vector xn are replaced by an observation ot at the time index
t and a relative time index t̃ associated with t, respectively:

p(ot) = N (µ(t̃),Σ) (10)
= N (Wϕ(t̃),Σ) (11)

where the mean vector µ is a function of the relative time in-
dex t̃ which can be defined by the relative frame index of the
observation ot in the corresponding segment. Compared to
the conventional HMM, this model can take account of con-
tinuous temporal characteristics of the given segment set.

For sparsity, the prior distribution with the precision vec-
tor αm of the weight vector wm is assumed to be

p(wm|αm) = N (0, diag(αm)−1) (12)

=
P∏

p=1

N (0, α−1
mp) (13)

where αmp denotes the precision of the prior with respect to
the p-th element of the weight wm. When the noise covari-
ance matrix Σ is diagonal, the elements of the weight W are
independent to each others, and the model can be considered
as augmentation of multiple RVMs. To select the relevant
basis functions and estimate the corresponding weights, the
sparse Bayesian learning technique [9, 11] is applied.
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3.2. Training RVMs

In order to obtain RVMs, the outcomes of the conventional
HMM training procedure are used. The HMM state tying re-
sults by decision tree-based clustering are employed to RVM
training. The state segmentation labels of speech data sig-
nals are obtained by performing forced alignment with pre-
trained HMMs. For each cluster, the length and the frame
rate of the corresponding speech segments are normalized:
the frame rate should be rapid enough to overcome the local
overfitting problem. Then, we can train as many state-level
multivariate RVMs as the number of clusters by the sparse
Bayesian learning algorithm. If the clustering algorithm is
applied not to state units but to phone models which consist
of corresponding states, we can obtain phone-level RVMs by
using the phone segmentation labels.

One of the alternatives in defining the basis functions is
using the Gaussian RBF kernel, which can represent the local
characteristics at the centered point by appropriate weighting.
Due to normalization, unlike a typical regression cases, there
are as many observations corresponding to a certain time in-
dex as the number of segments in their cluster at most. Thus,
a kernel function set made by centering at each training ob-
servation could be redundant, and kernel functions centered
respectively at all the possible time indices are enough with-
out redundancy or missing of a basis.

Table 1. Comparison between HMM and RVM with respect
to the number of parameters

HMM RVM

2PS (2M̃ + 1)PS

Table 1 shows the number of parameters of the conven-
tional HMM system and the proposed RVM system, where
M̃ and S indicate the average number of non-zero elements
in a row of W and the number of clusters, respectively. The
number of parameters to represent the mean sequence of an
RVM is required to be M̃ times more than the conventional.

3.3. Parameter generation using RVMs

Parameter generation using RVMs is based on the conven-
tional algorithm for HMMs by which the most probable
speech parameter sequence is generated under a constrain
of dynamic feature relation as (2). The difference is that,
when using RVMs, the mean vector sequence of HMMs cor-
responding to state sequence is replaced by that of RVMs
which is conducted by concatenating non-stationary, time-
varying mean segments. The discontinuity between adjacent
segments can be resolved by this algorithm.

Computational complexity of the conventional parameter
generation algorithm is O(P 3T 3) and additional computa-
tional complexity of parameter generation using RVMs is

O(PT ). Therefore, the proposed algorithm does not increase
computational load of parameter generation significantly
compared to the conventional one.

4. EXPERIMENTS

In order to evaluate the performance of the proposed tech-
nique when applied to speech synthesis, we conducted several
experiments on objective measurement and subjective listen-
ing test. All the speech data collected for speech synthesis
were Korean spoken language.

For the construction of the baseline speech synthesizer, a
Korean speech database spoken by a male (HNC) and a fe-
male (YMK) speakers was applied. Each speaker provided
1,050 utterances of narrative speech data amounting to 131
and 128 minutes, respectively. A baseline narrative speech
synthesizer was trained for each gender separately. Among
the 1,050 utterances, we used 1,000 utterances for training
the regression matrices and the remaining 50 utterances for
evaluating the performance for each gender.

Each utterance was sampled at 16 kHz and a 20 ms Ham-
ming window was applied with 5 ms frame shift for speech
feature extraction. The acoustic features were obtained by
STRAIGHT analysis [12]. As for the spectrum feature, a
25th-order mel-scaled cepstrum vector was extracted at each
frame. By attaching the ∆- and ∆∆-cepstra derived from the
extracted mel-scaled cepstrum sequence, the spectrum fea-
ture could be represented by a 75-dimensional vector at each
frame. We also extracted the fundamental frequency and 5-
dimensional band aperiodicity from each frame as for the ex-
citation feature. As the basic unit of speech synthesis, we
applied quinphones followed by context-dependent reading-
style text analysis. Each quinphone was modeled by a 5 state
left-to-right structured HMM where the observation distribu-
tion at each state was given by a single Gaussian pdf with
diagonal covariance matrix. All systems were implemented
by modification of the HMM-based Speech Synthesis System
(HTS) version 2.3 beta [13].

Fig. 1 shows examples of state-level and phone-level
RVMs, respectively, for the first and second mel-cepstral
coefficients. From the figures, we can see how the RVMs
capture the mean trajectory by the proposed techniques from
the given data.

4.1. Objective performance evaluation

We compared the outputs of three different algorithms: us-
ing conventional HMMs, state-level RVMs, and phone-level
RVMs. For each speaker, three acoustic models using the
comparative target algorithms were trained. To obtain phone-
level clustering, a typical decision tree-based clustering
method is modified to compute the likelihood of a phone-
level HMM rather than state. Using RVMs, the number of
clusters were set to be the same as using HMMs, which
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(a) State-level RVM
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b) Phone-level RVM

Fig. 1. Modeling examples of mel-cepstral coefficients by
state-level RVMs and phone-level RVMs. The mean sequence
and one standard deviation of the segment are shown by the
bold line and the region between the dotted lines, respectively.
Also, real speech segments are represented as shaded lines.

means that clustering for state-level RVMs is identical with
one for HMMs and splitting on phone-level clustering was
performed until the number of cluster became the same to the
summation of the number of leaf nodes of each decision tree.
In RVM training, the length of a segment was normalized to
1.0, frame rate for normalization was set to be 100 by simple
resampling based on interpolation, and the kernel width of
RBF kernel was determined by 0.1. To make continuous f0
sequence, the f0 values of the unvoiced region were filled
during the normalization process.

Table 2. Objective measurement of comparative models
(male)

method Mel-cepstral distance RMSE of lf0
HMM 4.552 0.1758

state-level RVM 4.393 0.1587
phone-level RVM 4.579 0.1775

Table 3. Objective measurement of comparative models (fe-
male)

method Mel-cepstral distance RMSE of lf0
HMM 4.899 0.1106

state-level RVM 4.629 0.1317
phone-level RVM 5.025 0.1188

Tables 2 and 3 show objective measurement of compara-

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Male

Female

CMOS

: 95% confidence interval

Fig. 2. Results of CMOS test: HMM vs. state-level RVM.

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Male

Female

CMOS

: 95% confidence interval

Fig. 3. Results of CMOS test: HMM vs. phone-level RVM.

tive models using different data set. In the overall, the mel-
cepstral distance of state-level RVM was lower than the con-
ventional, but phone-level RVM did not improve the perfor-
mance. The root mean square error (RMSE) of log f0 became
worse using the proposed method with the female voice. We
consider that the reason of f0 degradation was due to the un-
observed frame, i.e., unvoiced part. The performance of the
proposed system related to f0 could be better if an accurate
continuous pitch contour is available by any prediction algo-
rithm.

4.2. Subjective performance evaluation

We also conducted a subjective listening test to compare the
proposed algorithms to the conventional modeling technique,
for which 14 listeners participated and 10 sentences were
used. In the test, each listener was provided with speeches
synthesized through different methods, and the speech qual-
ity was measured in terms of the comparative mean opinion
score (CMOS) [14], where for each test a pair of two speech
files were given and each subject provided his/her preference
in speech quality in the range from -3 to 3 with a positive
value indicating that the former shows a better quality than
the latter, and vice versa.

Figs. 2 and 3 show the results of CMOS test evaluating by
subjective scores of state-level and phone-level RVMs respec-
tively compared to the conventional HMMs. We can find that,
although phone-level RVMs did not outperform the conven-
tional, the system of state-level RVMs generated better qual-
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ity of synthetic speech than the conventional one.

4.3. Discussion

From the experimental results, the performance of phone-
level RVMs was not better than conventional method. Main
differences of phone-level RVM from state-level RVM are
segmentation and clustering. We used the conventional clus-
tering for state-level RVMs which was obtained by the widely
used maximum description length criterion. Clustering for
phone-level RVMs was done by using phone-level HMMs,
but performance can be improved by applying proper cluster-
ing technique for time varying feature segments.

Advanced normalization is required to decrease the mod-
eling error of both state-level and phone-level RVMs. The
feature dynamics could be different according to the length of
the segment. Linearly normalized frame indices do not con-
sider this characteristics, therefore the modeling error could
occur due to them. Since phone-level segments are definitely
longer then state-level segments, this kind of normalization
error affects phone-level structure more.

5. CONCLUSIONS

In this paper, we propose as a feature sequence modeling and
generation method using RVMs as an alternative to recover
the detailed trajectories of speech feature. Since the RVM can
be employed to obtain a nonlinear regression, we apply it to
replace the model parameters of the state output pdfs. We pro-
pose RVMs to model the representative trajectory of the state
or phone segment which is obtained from temporally normal-
ized training feature sequences by using the semi-parametric
nonlinear regression method. From the experimental results,
it is shown that the proposed state-level RVM-based method
performs better than the conventional technique.
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