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ABSTRACT

In this paper, we consider the data association problem that arises

when localizing multiple sound sources using direction of arrival

(DOA) estimates from multiple microphone arrays. In such a sce-

nario, the association of the DOAs across the arrays that correspond

to the same source is unknown and must be found for accurate lo-

calization. We present an association algorithm that finds the correct

DOA association to the sources based on features extracted for each

source that we propose. Our method results in high association and

localization accuracy in scenarios with missed detections, reverber-

ation, and noise and outperforms other recently proposed methods.

Index Terms— data-association, multiple microphone arrays,

direction of arrival, wireless acoustic sensor networks, localization

1. INTRODUCTION

Wireless acoustic sensor networks (WASNs) consist of nodes that

are microphones or microphone arrays and feature signal processing

and wireless communication capabilities to perform computations

and communicate with each other. WASNs offer richer sensing ca-

pabilities than a single microphone array and find use in applications

such as hearing aids, ambient intelligence, hands-free telephony, and

acoustic monitoring [1]. In such applications, information about the

sources’ locations is important for operations like noise reduction

and speech enhancement. Location estimation is performed by fus-

ing information from the arrays through the use of the full audio

signals [2], the Steered Response Power function [3], or the con-

struction of acoustic maps [4]. However, such approaches require

the transmission of a significant amount of information through the

network resulting in high bandwidth consumption.

The minimum transmission bandwidth can be attained when

each node transmits a direction of arrival (DOA) estimate. In the

single source case, location can be estimated as the intersection of

DOA lines from the arrays [5–7]. However, when multiple sources

are active, a key problem is that each array transmits the multiple

DOA estimates and the central processing node receiving these DOA

estimates cannot know to which source they belong. The correct as-

sociation of DOAs across the arrays that correspond to the same

source has to be found, otherwise location estimation will result

in ghost-sources, i.e., locations not corresponding to real sources.

This is known as the data-association problem. Also, with multiple

active sources, some arrays might underestimate their number, es-

pecially when the sources are close together [8, 9]. Thus, the DOAs

of some sources from some arrays may be missing. This problem of
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missed detections is an important aspect which—to the best of our

knowledge—has not been widely examined in localization.

Some approaches to data-association rely only on the DOA es-

timates from the arrays: the work in [10] is based on clustering the

intersections of DOA lines from sensor pairs, but is suitable only

for scenarios with no missed detections, while the work in [11, 12]

considers only noiseless scenarios with perfect DOA estimates. The

method in [13] incorporates the data-association to the localization

stage by designing a non-linear location estimator that is applied to

every possible DOA combination from the sensors and is expected

to converge only to the locations of the real sources. However, as

shown in [9], the performance of [13] severely degrades in the pres-

ence of missed detections. Recently, we proposed the Grid-based

(GB) method [9, 14] for localizing multiple sources from DOA esti-

mates, which estimates a location for every possible DOA combina-

tion and then decides which of the estimated locations correspond to

real sources based on the location estimates and their corresponding

DOAs. However, its performance still degrades when the number of

arrays that exhibit missed detections increases. The method of [15]

utilizes additional information, apart from the DOA estimates: each

array computes binary masks in the frequency domain for source

separation. The association of DOAs to the sources is found by com-

paring these binary masks. However, the method does not consider

missed detections and works only for the limiting case of two arrays.

In this paper, we examine the data-association and localization

problem focusing on more realistic scenarios with missed detections.

In our approach, each array estimates features—in addition to the

DOAs—for every source that it can detect. By comparing these fea-

tures between the arrays, the correct association of DOAs can be

found. We propose the use of a feature that describes how the fre-

quencies of the captured signals in each array are distributed to the

sources. We also propose an algorithm for associating those fea-

tures. In contrast to [15] our association algorithm can handle multi-

ple arrays. As our results in Section 4 indicate, our algorithm offers

high association accuracy, our proposed features exhibit robustness

to missed detections, while the amount of information that needs to

be transmitted remains at low levels.

2. PROBLEM DEFINITION AND ASSUMPTIONS

We consider a WASN whose M nodes are each equipped with a mi-

crophone array, as depicted in Fig. 1. We assume that K sources are

active (K is assumed to be known). Missed detections can occur,

e.g., when the angular separation of some sources is small. Thus,

each array can detect up to K sources and the number of sources

each array detects can vary across the arrays. We also assume that

each active source is detected by at least one array, which is a nec-

essary condition to find a DOA association for all K sources. Each

array, locally estimates a DOA and a feature for each source it detects
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Fig. 1. Example cell with four sensor nodes (blue circles), and the

estimated DOAs (θ̂1–θ̂4) to two sources (red circles).

and transmits them to the central processing node. The central node

runs the association algorithm—based on the extracted features—to

find the DOA combination from the arrays that correspond to the

same source. When this association is found, a single source loca-

tion estimator can be applied to the DOAs of each source.

3. PROPOSED ASSOCIATION METHOD

3.1. In-node processing and feature extraction

Apart from the DOAs, each array estimates an association feature

for every source it can detect. Our proposed features describe how

the frequencies of the captured signals are distributed to the detected

sources. This is found by comparing the DOA estimate obtained in

each frequency at a given time frame to the final DOAs of the sources

that are estimated at that frame. The microphone signals in each (say

the mth) array are transformed into the Short-Time Fourier Trans-

form (STFT) domain, resulting in the signals Xm,i(τ, ω) where i

is the microphone index, and τ and ω denote the time frame and

frequency index, respectively. We also denote as (τ,Ω) the set of

frequencies ω for frame τ up to a maximum frequency ωmax. In the

remainder, we omit τ , as the procedure is repeated in each frame.

Our method starts by estimating a DOA in each frequency ω ∈ Ω
resulting in the DOA estimates φ(Ω). For DOA estimation in each

frequency we use the method of [16], although any method for nar-

rowband DOA estimation can be applied. We set ωmax to the spatial-

aliasing frequency above which ambiguous DOA estimates occur.

To estimate the DOAs of the sources for each frame, we use

the method of [8]. This method is based on finding the number

of sources the array is able to detect and their DOAs through a

matching-pursuit algorithm applied on the histogram of DOA esti-

mates obtained using all frequencies in Ω. The output is the number

of detected sources Km and their DOAs θm = [θ1, · · · , θKm
] for

time frame τ . Then, the frequencies in Ω are assigned to the detected

sources according to the following rule: The frequency point ω ∈ Ω
is assigned to source p if the following conditions are met:

A(φ(ω), θp) < A(φ(ω), θq), ∀q 6= p, (1)

A(φ(ω), θp) < ǫ, (2)

where A(X,Y ) denotes an angular distance function that returns

the difference between X and Y in the range of [0, π] [9]. Eqs.

(1) and (2) suggest that a frequency is assigned to the source whose

DOA is nearest to the DOA estimated in this frequency, as long as

their distance does not exceed a predefined threshold ǫ. If one of

the conditions is not met, then the DOA estimate in this frequency is

considered erroneous and is not assigned to any of the sources.

Using the frequencies in Ω for the current and B previous

frames, a histogram is formed for each detected source p that counts

Algorithm 1 Association Algorithm

Input: Features F , Number of Sources K
Output: Assignment G

S←
⋃

i CreateInitialAssignment(Fi,K) (Fig. 2(a))
while |S| > 1 do (Fig. 2(b))
(i, j)← argmin

i,j

Score(Merge(Si,Sj))

S← S \ (Si ∪ Sj) ∪Merge(Si,Sj)
end while

G← GetF inalAssignment(S) (Fig. 2(c))

while min
p,q

Score(G[F i
p ↔ F

j
q ]) < Score(G) do

G←G[F i
p ↔ F

j
q ]

end while

how many times each frequency was assigned to source at direction

θp. These histograms constitute the proposed association features

which, along with the estimated DOAs θm, are transmitted to the

central node for each time frame τ . As all arrays record the same

signal—albeit with relative phase differences—the extracted his-

togram features across the arrays that belong to the same source are

expected to be “similar”.

3.2. Data-association algorithm

Let F denote the set of all association features and Fm denote the set

of features Fm,k, k = 1, . . . ,Km for all detected sources from the

mth array. The problem is to find a set G that contains K groups of

features, denoted as Gi, i = 1, . . . ,K,Gi ∈ G, such that: (a) fea-

tures from the same array cannot be assigned to the same group, (b)

each feature must be assigned to exactly one group, and (c) all groups

contain features that are “similar” to each other. We call the set G

an assignment of features to groups. As each feature corresponds

to a source’s DOA, the resulted K groups provide the association of

DOAs across the arrays for the K sources. We proceed by proposing

and defining a way to measure the quality of an assignment.

Let D be a function measuring the dissimilarity of two features,

taking values in [0, 1]. We define the score of each group Gi as the

maximum pairwise dissimilarity of its contained features:

Score(Gi) = max
p,q

D(F i
p, F

i
q), (3)

where F i
p denotes the pth feature of group Gi. Next, we define the

overall score of an assignment G as the maximum score among the

scores of its contained groups Gi ∈ G :

Score(G) = max
i

Score(Gi). (4)

Our goal is to find an assignment G that minimizes (4) and satisfies

constraints (a) and (b) mentioned above. Formally, it is defined as:

argmin
G

Score(G). (5)

To compare two assignments with the same score, we compare the

scores of their groups in descending order up to their maximum non-

equal value. The intuition behind the above formulation is that we

want to find an assignment where all groups contain features that

are as similar as possible to each other. We propose a greedy algo-

rithm to find such an assignment. It does not necessarily identify the

optimal solution, but it is simple, fast, and finds good solutions in

practice. The algorithm—shown in Algorithm 1—works as follows.

First, an assignment of features to K groups is created for each

set Fm, m = 1, · · · ,M , where each group contains a single fea-

ture. If the number of features for an array is less than K, some

23rd European Signal Processing Conference (EUSIPCO)

1577
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Fig. 2. Example of the association algorithm for M = 4 arrays and K = 3 sources. (a) First, an assignment of features to K groups is

created for the set of features Fm for each array. The empty boxes represent the empty groups, as the corresponding arrays have detected less

than K sources. (b) The algorithm finds the assignment (array 1 and 2 in this example) that, when merged, produce the best score according

to (5) and merges them. (c) The merging operations stop when a single assignment G remains.

groups are left empty (Fig. 2(a)). Then, the algorithm tries to greed-

ily merge those assignments, until only one remains (Fig. 2(b)). This

is done by selecting two assignments that, when merged, produce the

best possible assignment according to (5). The merging is done by

considering all possible ways to merge them, which equals K!. This

problem is known as the Linear Bottleneck Assignment Problem [17]

which can be solved efficiently in polynomial time. In case K is rel-

atively small, a brute-force approach is often faster. When this step

is finished, a single assignment G remains (Fig. 2(c)).

Finally, we perform a second greedy step to further refine this

assignment. This step selects two features F i
p and F j

q from different

groups and tries to swap them in order to further reduce the score of

G; for brevity, we use G[F i
p ↔ F j

q ] to refer to the new assignment

in which F i
p and F j

q are interchanged. We also allow one of them

to be empty or, in other words, to move a feature from one group to

another. The algorithm terminates if no such pair exists.

4. RESULTS AND DISCUSSION

We performed simulations on a cell of a WASN with dimensions

of V = 4 m, with four nodes arranged according to the setup in

Fig. 1. Each node is a uniform circular array with N = 8 omnidi-

rectional microphones and a radius r = 0.05 m. In each simulation,

the sound sources were speech recordings of 2 seconds sampled at

44.1 kHz and had equal power when located at the center of the cell.

The signal-to-noise ratio (SNR) was measured as the ratio of the

power of each source signal when located at the center of the cell to

the power of the noise signal. To simulate different SNR values we

added white Gaussian noise at each microphone, uncorrelated with

the source signals and the noise at the other microphones. Note that

this framework results in different SNR at each array depending on

how close the source is to the arrays.

We used the Image-Source method [18] to simulate a room of di-

mensions 10×10×3 meters and produce signals of omnidirectional

sources at various reverberation times. The WASN cell was placed

in the middle of the room with the arrays and the sources being at

1.5 m height. We considered scenarios of two and three simultane-

ously active sources. Each simulation was repeated 30 times and the

sources were located within the cell with independent uniform prob-

ability. For processing, we used frames of 2048 samples with 50%

overlap. The FFT size was set to 2048 and ωmax = 4 kHz which

is the spatial-aliasing frequency for the given array geometry. The

same frequency range was also used for the method of [15] that we

used for comparison purposes. For our method we set ǫ = 10◦ and

B = 5 previous frames. Finally, to measure the dissimilarity of our

proposed histogram features in (3) we use the Pearson Correlation

Coefficient Distance defined as [19]:

D(Fp, Fq) =
1− rFp,Fq

2
, (6)

which takes values in the range of [0, 1], where rFp,Fq
is the Pearson

correlation coefficient between histogram features Fp and Fq .

4.1. Evaluation metrics

To evaluate the association accuracy we use two metrics. The first

(denoted as Metric 1) counts the percentage of frames where the cor-

rect association was found. We say that the association for a frame

is correct if all sources in that frame are assigned the correct DOAs

from all the arrays. When an error occurs, it means that some DOAs

from some arrays are assigned to an erroneous source. As an ex-

ample consider that in Fig. 2(c) the DOA that corresponds to fea-

ture F4,1 was erroneously assigned to the source that corresponds

to the first group. While this association is erroneous—according to

Metric 1—there are pairs of DOAs from arrays that are associated

correctly, such as the pairs (F1,1, F2,1), (F1,2, F3,1),(F3,1, F4,2),
(F1,2, F4,2), and so on, while other pairs are associated erroneously,

such as pairs (F1,1, F4,1), (F2,1, F4,1). The more the DOA pairs

that are associated correctly, the lower the impact of the erroneous

association is to the localization error. For this reason, our second

metric (denoted as Metric 2) counts the percentage of correct pair-

wise associations between all pairs of arrays quantifying better how

many parts of an association are correct.

4.2. Robustness to missed detections

First, we evaluate the efficiency of our method in handling missed

detections. We compare the proposed features for data-association

with the ones proposed in [15], which we modified to work with a

circular array. As the association algorithm of [15] can only work

for two arrays, we use our proposed association algorithm on the

features (i.e., estimated source separation binary masks) extracted

according to [15]. In this simulation, we assume the DOAs of the

sources, i.e., vectors θm, at each array are known. To simulate

missed detections, we define Cs as the number of arrays that de-

tected s sources. We fix Cs and remove some DOAs from some

arrays until the desired value of Cs is reached. The sources whose

DOAs are removed as well as the arrays that exhibit the missed de-
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Fig. 3. Data association accuracy for two sources in an anechoic

environment for different values of SNR and C2.

tection are selected at random in every frame under the constraint

that each source must be detected by at least one array (Section 2).

Fig. 3 shows the association accuracy in an anechoic environ-

ment with two sources and different SNR cases, for all values of C2,

i.e., the number of arrays that detected two sources. From Fig. 3

it is clear that our approach is robust to missed detections, achiev-

ing more than 80% accuracy with both metrics for all SNR and

C2 cases. The accuracy of association using the features from [15]

when missed detections are present (C2 < 4) is severely degraded,

showing the method’s inability to handle missed detections. When

a source is not detected, the method of [15] erroneously assigns

its frequencies to the other sources, degrading the association per-

formance. In our method, we avoid such erroneous assignments

through the use of (2). In the case of no missed detections (C2 = 4)

our proposed features are more robust to noise offering improved ac-

curacy, especially at low SNR, compared to the features from [15].

Finally, the features of [15] cannot be used when C2 = 0 (the

corresponding area in Fig. 3 is empty). When all arrays detect one

source—which is not necessarily the same—these features do not

provide useful information for association as each array will estimate

a binary mask with the value of one for every frequency. However,

our proposed association features are able to discriminate between

the sources providing high association accuracy even in this extreme

case where all the arrays detected one source.

4.3. Data-association accuracy

We evaluate the association accuracy of our proposed method in a

more practical setting where the sources’ DOAs are estimated per

frame as described in Section 3.1. The association accuracy for dif-

ferent SNR values and reverberation times, namely, anechoic, T60 =
250 ms, and T60 = 400 ms is shown in Fig. 4 for two and three

simultaneously active sources. As expected, the performance de-

grades with increasing reverberation time, especially in the three

sources case. However, note that while the overall association accu-

racy (Metric 1) is reduced, most of the DOAs between pairs of arrays

are associated correctly (Metric 2) in all reverberation and SNR sce-

narios. This indicates that while association errors in frames occur

more often, most DOA pairs are associated correctly.
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Fig. 4. Data association accuracy of the proposed method for two

and three sources in different reverberation and SNR scenarios.

Note that in these results the values of C2 and C3 vary in each

frame, in contrast to the results in Section 4.2 where the number

of Cs was fixed. These values depend on how many sources the

DOA estimation in each array can detect. We observed that for the

two sources case in approximately only 16% of the frames all four

arrays detected two sources (C2 = 4), in 24% of the frames C2 = 3,

in 35% of the frames C2 = 2, in 15% of the frames C2 = 1, and

in 10% of the frames none of the arrays detected two sources. The

values were approximately constant for all SNR cases. The problem

of missed detections is more evident in the case of three sources,

where in 95% of the frames C3 was either zero or one and with

the value of C2 being either two or three for approximately 72%

of the frames in all SNR cases. These numbers not only reveal the

efficiency of our method, but also show how often missed detections

can occur in practice, highlighting the need for a method that can

handle missed detections to accurately localize the sources.

4.4. Localization experiments

Since the final goal of any data-association algorithm is to improve

the localization accuracy, in the section we evaluate our proposed

method in terms of localization error and compare it again with the

use of association features extracted from [15]. Our previously pro-

posed grid-based (GB) method for multiple sources [9], which uses

no additional information apart from the DOA estimates, is also con-

sidered. For the method of [15] and our proposed method, the single

source grid-based method from [9] is applied to localize the resulted

DOA associations. The localization performance was measured in

terms of the root-mean square error (RMSE) over all sources, all 30

different source configurations, and for all frames where each source

was detected by at least one array. Fig. 5 depicts the localization

performance for two and three simultaneously active sources in re-

verberant environments with reverberation time T60 = 250 ms and

T60 = 400 ms. The localization error using the estimated DOAs

but assuming that the correct association of DOAs to the sources is

known (denoted as Perfect Association), is also included to repre-

sent the best-case scenario. It can be observed, that the proposed

method outperforms the others providing location estimates close to
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Fig. 5. Localization error as a percentage of cell size V for different reverberation scenarios and number of active sources.

the best-case, especially at higher SNR values, for both reverberation

scenarios and for both two and three sources. The other two meth-

ods perform worse than the proposed for all cases, with the perfor-

mance degradation being more evident in the three sources case. The

method of [15] performs worse or equally well as the GB method for

multiple sources [9]. However, the method of [9] uses no additional

information apart from the DOA estimates in contrast to [15].

4.5. Transmission requirements

Finally, we quantify the transmission requirements. Apart from the

DOA estimates, each array m has to transmit the association fea-

tures. A simple and efficient scheme to transmit this information

is to encode the DOA index that each frequency was assigned to.

Given Km estimated sources, each frequency will belong to one of

the sources or it will be considered erroneous. The central process-

ing node can then construct the association features using the trans-

mitted frequency assignment for the current and B previous frames.

Thus, for each frequency ⌈log
2
(Km+1)⌉ bits are required to encode

the DOA indices, with ⌈·⌉ denoting the ceiling operator. A similar

encoding scheme can be used for the method of [15], where each fre-

quency requires ⌈log
2
(Km)⌉. Thus, our proposed method results in

improved data-association and localization accuracy, while its trans-

mission requirements remain at low levels.

5. CONCLUSIONS

We considered the data-association problem that occurs when local-

izing multiple sound sources in a WASN using DOA estimates from

multiple microphone arrays. We presented a data-association ap-

proach that can associate the DOAs from the different arrays to the

correct sound sources with high accuracy. Our approach was based

on the construction of association features for each detected source

in each array, which proved to be robust to scenarios with missed

detections that occur very often in practice. Using simulations and

comparisons with other methods, we confirmed the efficiency of our

proposed method to correctly associate the sound sources with their

corresponding DOAs and significantly improve localization perfor-

mance, while keeping transmission requirements at low levels.

REFERENCES

[1] A. Bertrand, “Applications and trends in wireless acoustic sensor net-
works: A signal processing perspective,” in IEEE Symp. on Commu-

nications and Vehicular Technology in the Benelux, 2011, pp. 1–6.

[2] D. J. Mennill, M. Battiston, D. R. Wilson, J. R. Foote, and S. M.
Doucet, “Field test of an affordable, portable, wireless microphone

array for spatial monitoring of animal ecology and behaviour,” Meth-

ods in Ecology and Evolution, vol. 3, no. 4, pp. 704–712, 2012.

[3] H. Do and H.F. Silverman, “A Fast Microphone Array SRP-PHAT
Source Location Implementation using Coarse-To-Fine Region Con-
traction (CFRC),” in IEEE WASPAA, Oct 2007, pp. 295–298.

[4] P. Aarabi, “The fusion of distributed microphone arrays for sound
localization,” EURASIP Journal of Applied Signal Processing, vol.
2003, pp. 338–347, January 2003.

[5] M. Gavish and A. J. Weiss, “Performance analysis of bearing-only tar-
get location algorithms,” IEEE Trans. on Aerospace and Electr. Syst.,
vol. 28, no. 3, pp. 817–828, 1992.

[6] Z. Wang, J. Luo, and X. Zhang, “A novel location-penalized maximum
likelihood estimator for bearing-only target localization,” IEEE Trans.

on Signal Processing, vol. 60, no. 12, pp. 6166–6181, 2012.
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