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ABSTRACT
In this paper we present a general solution for multi-target
tracking problems with superpositional measurements. In a
superpositional sensor model, the measurement collected by
the sensor at each time step is a superposition of measure-
ments generated by each of the targets present in the surveil-
lance area. We use the Bayes multi-target filter with La-
beled Random Finite Set (RFS) in order to jointly estimate
the number of targets and their trajectories. We propose an
implementation of this filter using Sequential Monte Carlo
(SMC) methods with an efficient multi-target sampling strat-
egy based on the Approximate Superpositional Cardinalized
Probability Hypothesis Density (CPHD) filter.

1. INTRODUCTION

Superpositional sensors are an important class of pre-
detection sensor models which arise in a wide range of joint
detection and estimation problems. In a superpositional sen-
sor model, the measurement at each time step is a superposi-
tion of measurements generated by each of the targets present
[1, 2]. This is a different setting compared to the usual multi-
target tracking problems using detections model [3–11].

In [1], Mahler derived a superpositional Cardinalized Prob-
ability Hypthesis Density (CPHD) filter, as an approxima-
tion to the Bayes multi-target filter for superpositional sensor.
However, this approximate filter is numerically intractable
due to the combinatorial nature of the solution. The first
tractable superpositional approximate CPHD (SA-CPHD) fil-
ter was proposed in [2], and successfully demonstrated on an
RF tomography application. The technique was also extended
to multi-Bernoulli and a combination of multi-Bernouli and
CPHD [12]. These filters, however, are not multi-target track-
ers because they rest on the premise that targets are indis-
tinguishable. Moreover, they require at least two levels of
approximations: analytic approximations of the Bayes multi-
target filter and particles approximation of the obtained recur-
sion.

Inspired by [1,2], this paper proposes a multi-target tracker
for superpositional sensors which estimates target tracks and
requires only one level of approximation. Our formulation
is based on the class of labelled Random Finite Sets (RFSs)

[13–15], which enables the estimation of target tracks as
well as direct particle approximation of the (labeled) Bayes
multi-target filter. To mitigate the depletion problem aris-
ing from sampling in high dimensional space we propose
an efficient multi-target sampling strategy using the super-
positional CPHD filter [1, 2]. While both the CPHD and la-
beled RFS solutions require particle approximation, the lat-
ter has the advantage that it does not require particle cluster-
ing for the multi-target state estimation. Simulation results
are not reported here due to space limitation. However, pre-
liminary results in a challenging closely-spaced multi-target
scenario using radar power measurements with low signal-
to-noise (SNR) ratio [16–19] verify the applicability of the
proposed approach and can be found in [20].

The paper is organised as follows: in Section 2 we recall
multi-target Bayes filter, some definitions for Labeled RFSs,
and superpositional CPHD filter. In Section 3 we discuss the
rationale behind our approach, provide details on how to use
the approximate CPHD filter on multi-target particles at time
k−1, and present the multi-target particle tracker with Vo-Vo
proposal distribution 1. Conclusions and future directions are
discussed in Section 4.

2. BACKGROUND

Suppose that at time k, there are Nk objects with their
states denoted by xk,1, . . . , xk,Nk , each taking values in
a state space X . An RFS is a random variable Xk =
{xk,1, . . . , xk,Nk} that takes values in F(X ), the space of all
finite subsets ofX . Mahler’s Finite Set Statistics (FISST) pro-
vides powerful mathematical tools for dealing with RFSs [4]
based on a notion of integration/density that is consistent with
point process theory [7]. In this work we are interested in the
multi-object filtering density, which can be propagated by the
multi-object Bayes filter as detailed in [4].

1The Vo-Vo density was originally called the Generalized Labeled Multi-
Bernoulli density. However, we follow Mahler’s last book [5] and call this
the Vo-Vo density.
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2.1. Labeled RFS

The labeled RFS model incorporates a unique label in the ob-
ject’s state vector to identify its trajectory [4]. The (single-
target) state space X is a Cartesian product X×L, where X is
the feature/kinematic space and L is the (discrete) label space.
A finite subset X of X×L has distinct labels if and only if X
and its labels {` : (x, `) ∈ X} have the same cardinality [13].
A recently developed class of labeled RFS, known as the Vo-
Vo distributions [5, 13, 14], is a conjugate prior that is also
closed under the Chapman-Kolmogorov equation under the
standard multi-target model. Let L : X×L → L be the pro-
jection L((x, `)) = `, and ∆(X) ,δ|X|(|L(X)|) denote the
distinct label indicator. A Vo-Vo multi-target density takes
the form [13, 14]:

π(X) = ∆(X)
∑
c∈Ξ

w(c)(L(X))
[
p(c)
]X

, (1)

where Ξ is a discrete index set. The density in (1) is a mixture
of multi-object exponentials. In [13, 14] an analytic solution
to the labeled version of the multi-target Bayes filter, known
as the Vo-Vo filter [5], was derived using labeled RFS.

2.2. Superpositional Approximate CPHD

In a superpositional sensor model, the measurement z is a
non-linear function of the sum of the contributions of indi-
vidual targets and noise [1]. The SA-CPHD filter presented
in [2] is an approximation to the multi-target Bayes filter for
a multi-target likelihood function of the form

gk(z|X) = NR

(
z −

∑
x∈X

h(x)

)
(2)

where NR(·) is a zero-mean Gaussian distribution with co-
variance R. Similar to the standard CPHD filter [4], the
SA-CPHD filter [1, 2] is an analytic approximation of the
Bayes multi-target filter [20, eqs.(2)-(3)] based on indepen-
dently and identically distributed (iid) cluster RFS.

We are interested in using the approximate CPHD for su-
perpositional measurements of the following form:

z̃k =

∣∣∣∣∣ ∑
x∈Xk

h̃(x)

∣∣∣∣∣
2

+ nk (3)

where Xk is the labeled multi-target state at time k, nk ∼
N (0, σ2

n) is zero-mean white Gaussian noise, and h̃(x) is a
possibly nonlinear function of the single state vector x =
(x, `). The model in eq. (3) can be used to approximate the
radar power measurement model commonly used in Track-
Before-Detect (TBD) problems [16–19] assuming a Gaus-
sian. Obviously the model in eq. (3) is a strong approximation
of the TBD model. However, it allows the use of a superposi-
tional CPHD update step which can be used to evaluate mea-
surement updated PHD v(x) and cardinality distribution ρ(n)

for the targets set. In turns, the information in the updated
v(x) and ρ(n), along with the targets labels from the previ-
ous step and birth model [13, 20], can be used to construct
an approximate posterior density using the Vo-Vo distribu-
tion in (1). Finally, the obtained approximate posterior can
be used as a proposal distribution for a multi-object particle
filter. Following [1, 2], standard CPHD formulas are used for
the prediction step, while the SA-CPHD update step is given
by:

ρk(n) =ρk|k−1(n)
NΣr+Σn

k|k−1

(
z̃k − nµ̂k|k−1

)
NΣr+Σk|k−1

(
z̃k −Nk|k−1µ̂k|k−1

) (4)

vk(x) =vk|k−1(x)
NΣr+Σo

k|k−1

(
z̃k − h̃(x)− µo

k|k−1

)
NΣr+Σk|k−1

(
z̃k −Nk|k−1µ̂k|k−1

) (5)

Details on eqs. (4)-(5) can be found in [2]. In the sequel
we describe how the updated PHD and cardinality distribu-
tion from the SA-CPHD can be used to design an efficient
proposal distribution for multi-target tracking using particles.

3. BAYESIAN MULTI-TARGET TRACKING FOR
SUPER-POSITIONAL SENSOR

In general, the propagation of the multi-target posterior in-
volves the evaluation of multiple set integrals and hence
the computational requirement is much more intensive than
single-target filtering. Particle filtering techniques permits re-
cursive propagation of the set of weighted particles that ap-
proximate the posterior. Following [7], suppose that at time
k − 1, a set of weighted particles {w(i)

k−1,X
(i)
k−1}

Np
i=1 repre-

senting the multi-target posterior πk−1|k−1 is available, i.e.

πk−1(X) ≈
Np∑
i=1

w
(i)
k−1δ(X;X

(i)
k−1) (6)

Note that δ(·;X(i)
k−1) denotes the Dirac-delta centered at

X
(i)
k−1. The particle filter approximates the multi-target pos-

terior πk by a new set of weighted particles {w(i)
k ,X

(i)
k }

Np
i=1

as follows

Multi-target Particle Filter

For time k ≥ 1

• For i = 1, . . . , Np sample X̃
(i)
k ∼ q(·|X(i)

k−1, zk) and set

w̃
(i)
k =

gk(zk|X̃
(i)
k )fk|k−1(X̃

(i)
k |X

(i)
k−1)

qk(X̃
(i)
k |X

(i)
k−1, zk)

w
(i)
k−1 (7)

• Normalize the weights: w̃(i)
k =

w̃
(i)
k∑Np

i=1 w̃
(i)
k

Resampling Step

• Resample {w̃(i)
k , X̃

(i)
k }

Np
i=1 to get {w(i)

k ,X
(i)
k }

Np
i=1
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The importance sampling density qk(·|Xk−1, zk) is a
multi-target density and X̃k is a sample from an RFS. The
main practical problem with the multi-target particle filter is
the need to perform importance sampling in very high dimen-
sional spaces if many targets are present. A naive choice of
importance density such as the transition density will typi-
cally lead to an algorithm whose efficiency decreases expo-
nentially with the number of targets for a fixed number of
particles [7]. In the following we design an efficient multi-
target proposal distribution qk(·|Xk−1, zk) using the SA-
CPHD [1, 2] and the Vo-Vo distribution [13, 14].

3.1. Superpositional CPHD proposal

In this section we discuss how to use the SA-CPHD filter
to construct a relatively inexpensive and accurate proposal
q(·|Xk−1, zk) using the Vo-Vo density. The basic idea is
to obtain the updated PHD vk(x) and cardinality distribution
ρk(n) at time k from the SA-CPHD filter and multi-target
particles at time k− 1. We then construct a proposal distribu-
tion q(·|Xk−1, zk) that exploits the approximate posterior in-
formation contained in both the cardinality distribution ρk(·)
and the state samples from vk(·).

Assume a particles representation
{
X

(i)
k−1, w

(i)
k−1

}Np

i=1
of

the posterior distribution πk−1(X) is available at time k −
1. Then, the cardinality distribution ρk−1(·) and the PHD
vk−1(·) at time k − 1 are given by [7]:

ρk−1(n) ∝
∑

i:
∣∣∣X(i)
k−1

∣∣∣=n

w
(i)
k−1

vk−1(x) =

Np∑
i=1

∑
`∈L

(
X

(i)
k−1

)w
(i)
k−1 δ

(
x;x

(i)
k−1,`

)

where x
(i)
k−1,` denotes the kinematic part of each(

x
(i)
k−1, `

(i)
k−1

)
∈ X

(i)
k−1. The SA-CPHD is then used to ob-

tain the updated cardinality distribution ρk(·) and and PHD
vk(·) using the measurement zk collected at time k. Unlike
in standard unlabeled CPHD filtering, there is a natural label-
ing/clustering of particles due to the existing labels at time
k − 1 and the chosen iid cluster process with implicit cluster
labels for the birth model. In fact we have:

vk(x) =

Np∑
i=1

∑
`∈L

(
X

(i)
k

)w(i)
k δ

(
x;x

(i)
k,`

)

Then we can rewrite the PHD according to target labels as

vk(x) =
∑

`∈L0:k

vk,`(x)

vk,`(x) =

Np∑
i=1

∑
`′∈L

(
X

(i)
k

) δ`(`
′
) w

(i)
k δ

(
x;x

(i)
k,`

)

where vk,`(x) is the contribution to the PHD of track `. Note
that the above is not the PHD of a labeled RFS but the PHD
mass from a specific label representing a survival or birth tar-
get. This means that at time k we can extract |L0:k| clusters
of particles from the posterior PHD. Here, |L0:k| is the set of
labels at time k, which is built recursively as the union of sur-
viving and newborn labels [13]. Furthermore, a continuous
approximation to each cluster can be obtained by evaluating
sample mean and covariance for a Gaussian approximation,

vk,`(x) = p+
k (`) N (x;µk,`, Qk,`) (8)

where p+
k (`) is the PHD mass of the `th cluster. The obtained

posterior cardinality and posterior target clusters can be used
to construct a proposal distribution q(·|Xk−1, zk) using the
Vo-Vo density in (1).

3.2. Vo-Vo Proposal Distribution

We seek a proposal distribution that matches the CPHD car-
dinality exactly while exploiting the weights of individual la-
beled target clusters as computed from the approximate pos-
terior PHD. A single component Vo-Vo density can be used,

qk(Xk|Xk−1, zk) = ∆(Xk)ω(L(Xk)) [p(·)]Xk (9)

We now specify the component weight ω(L(Xk)) and the
multi-object exponential [p(·)]Xk . The single-target densities
p(·) are obtained directly from the Gaussian clusters,

pk(x, `) = N (x;µk,`, Qk,`), ` ∈ L0:k (10)

The weight ω(L(Xk)) is then chosen to preserve the CPHD
cardinality distribution, and for a given cardinality, to sam-
ple labels proportionally to the product of the posterior PHD
masses of any possible label combinations. Specifically, from
the posterior PHD mass of each cluster p+

k (`) we construct
approximate “existence” probabilities as:

r+
k (j) =

p+
k (j)∑|L̃0:k|

`=1 p+
k (`)

, j = 1, . . . , |L̃0:k| (11)

L̃0:k =

Np⋃
i=1

L(X
(i)
k−1)

⋃
Lk (12)
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where L̃0:k is the set of labels from resampled particles at time
k − 1 and newborn targets at time k. The weight ω(L(Xk))
in (9) is then defined as:

ω(L(Xk)) = ρk(|L(Xk)|)
[r+

k (·)]L(Xk)

e|L(Xk)|(Rk)
(13)

where Rk = {r+
k (j)}j∈L̃0:k

denotes the set of “existence”
probabilities for all current tracks and en(·) is the elementary
symmetric function of order n. The construction of the pro-
posal in (9) leads to a simple and efficient strategy for sam-
pling. Specifically, to sample from (9) we: (1) sample the
cardinality

∣∣∣X(i)
k

∣∣∣ of the newly proposed particle according

to the distribution ρk(n); (2) sample
∣∣∣X(i)

k

∣∣∣ labels L(X
(i)
k )

from L̃0:k using the distribution defined by [r+k (·)]L(Xk)

e|L(Xk)|(Rk) ; (3)

for each ` ∈ L(X
(i)
k ) we sample the kinematic part x(i)

k,` from
pk(·, `) = N (·;µk,`, Qk,`).

Multi-Target Particle Filter
with Vo-Vo Proposal Distribution

Initialize particles X
(i)
0 ∼ p0(·)

For k = 1, . . . ,K

• For i = 1, . . . , Np

– Sample the cardinality for the new particle
∣∣∣X(i)

k

∣∣∣ ∼ ρk(n)
– Sample the set of labels L

(
X

(i)
k

)
uniformly from L̃0:k

– For each ` ∈ L
(
X

(i)
k

)
generate x(i)k,` ∼ N

(
·;µk,`, Qk,`

)
– For j = 1, . . . , Np evaluate the transition kernel

fk|k−1

(
X

(i)
k
|X(j)
k−1

)
=

∏
`∈L(i)

D

(
1 − pS(`)

) ∏
`∈L(i)

NB

(
1 − pB(`)

)
×

∏
`∈L(i)

S

pS(`) fk|k−1(x
(i)
k,`
|x(j)
k−1,`

)
∏

`∈L(i)
B

pB(`) pB(x
(i)
k,`

)

– Evaluate the proposal distribution

qk|k−1

(
X

(i)
k
|Xk−1, zk

)
= ω

(
L(X(i)

k
)

) ∏
`∈I
N
(
x
(i)
k

;µk,`, Qk,`

)

– Evaluate the multi-object likelihood gk
(
zk|X

(i)
k

)
– Update the particle weight w(i)

k using

w
(i)
k =

gk(zk|X(i)
k )

Np∑
j=1

fk|k−1(X
(i)
k |X

(j)
k−1)w

(j)
k−1

qk(X
(i)
k |Xk−1, zk)

• Normalize the weights and resample as usual

Notice that in the pseudo-code we require the evaluation
of the multi-target transition sum kernel fk|k−1(X

(i)
k |Xk−1)

with respect to the previous set of particles. This is due to
the fact that for each new particle X

(i)
k the cardinality

∣∣∣X(i)
k

∣∣∣
and set of labels L

(
X

(i)
k

)
are not sampled directly from the

previous particle X
(i)
k−1. This obviously increases the com-

putational load but generally leads to improved performance.
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Fig. 1. Simulated scenario and estimated trajectories. The
radar is positioned at the Cartesian origin and there are 3
closely spaced targets moving towards the origin.

Furthermore, efficient approximation techniques can be used
to mitigate the computational load due to the sum kernel prob-
lem [18]. We refer the reader to [20] for additional details.

Simulation results for a multi-target TBD problem with
closely spaced targets are reported in Figs. 1-2. Due to space
limitation, we only report the simulation results for SNR =
10dB. Additional details including the single-target dynam-
ics and the TBD measurement model can be found in [20].
Notice that a comparison between the proposed approach and
the SA-CPHD filter would be unfair. In fact, the SA-CPHD
filter was developed for a superpositional measurement model
with additive Gaussian noise, while the Radar TBD is a su-
perpositional model with Rayleigh noise. Thus, while the
SA-CPHD is a good approximation for designing a proposal
distribution for this case, it cannot handle this type of mea-
surement model on its on. From Figs. 2(a)-2(b) we can verify
the applicability of the proposed approach and performance
improvement for increasing number of particles.

4. CONCLUSIONS AND FUTURE RESEARCH

In this paper we discussed a general solution for multi-target
tracking with superpositional measurements. The proposed
approach aims at evaluating the multi-target Bayes filter using
SMC methods. The critical enabling step was the definition
of an efficient proposal distribution based on the Approximate
CPHD filter for superpositional measurements. Preliminary
simulation results verify the applicability of the proposed ap-
proach. Future research will focus on validating the approach
for challenging multi-target TBD problems with low SNR.
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