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ABSTRACT
Phase Modulation on the Hypersphere (PMH) is considered
in which the instantaneous sum power is constant. It is shown
that for an i.i.d. Gaussian channel, the capacity achieving in-
put distribution is approximately uniform on a hypersphere
when the number of receive antennas is much larger than the
number of transmit antennas. Moreover, in the case that chan-
nel state information is not available at the transmitter, it is
proven that the capacity achieving input distribution is ex-
actly uniform on a hypersphere. Mutual information between
input and output of PMH with discrete constellation for an
i.i.d. Gaussian channel is evaluated numerically. Further-
more, a spherical spectral shaping method for PMH is pro-
posed to have Continuous Phase Modulation on the Hyper-
sphere (CPMH). In CPMH, the continuous time signal has a
constant instantaneous sum power. It is shown that using a
spherical low pass filter in spherical domain followed by a
Cartesian filter results in very good spectral properties.

Index Terms— Phasemodulation, multiple-inputmultiple-
output (MIMO) systems, peak-to-average power ratio (PAPR),
single-RF transmitters, continuous phase modulation (CPM),
spherical filtering.

1. INTRODUCTION

Load modulated single-RF Multiple-Input Multiple-Output
(MIMO) transmitters have been proposed recently in [1] as
an efficient implementation method of MIMO transmitters.
In [1] and [2], load modulated massive MIMO transmitters
have been shown to have high power efficiency and allow
for a compact implementation in massive MIMO base sta-
tions. In load modulated MIMO transmitters, a central power
amplifier is used for all antennas in contrast to the standard
implementation method which uses one amplifier per an-
tenna. The power efficiency of the central power amplifier in
load modulated MIMO transmitters is affected by the Peak
to Average Sum Power Ratio (PASPR). Due to a large num-
ber of antennas at massive MIMO base stations, by using
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load modulated MIMO transmitters, high Peak to Average
Power Ratio (PAPR) signals such as Orthogonal Frequency-
Division Multiplexing (OFDM) signals can be transmitted
using an efficient power amplifier with low back-off [1]. This
is, in fact, because of the PASPR decaying with the number
of antennas [1].
Using load modulated MIMO transmitters in user termi-

nals does not reduce PASPR as much as in base stations. This
is due to the low number of antenna elements in user termi-
nals.
In [3], a novel modulation technique called Phase Mod-

ulation on the Hypersphere (PMH) has been proposed to use
in load modulated single-RF MIMO transmitters with low to
moderate number of antennas in order to have better power
efficiency1. In PMH, the sum power is fixed, i.e., x†x =
constant; therefore, the central power amplifier in load mod-
ulated single-RF MIMO transmitters requires no back-off. In
fact, the signal at the central power amplifier has a PASPR of
0dB. PMH can be considered as a generalized form of clas-
sical phase modulation for multi-antenna applications. Note
that PMH is a different approach than the method proposed
in [4] for downlink of massive MIMO systems.
In [3], the sum capacity of PMH in an identity channel2

has been derived and it has been shown that the capacity is
achieved by a signal distributed uniformly on the surface of
a hyperball. Discrete constellation PMH has been also pro-
posed in [3] as a set of points distributed uniformly on a
hypersphere. Moreover, in [3], the performance of discrete
constellation PMH has been evaluated by using some known
bounds on spherical codes.
In this paper, we investigate PMH in Gaussian i.i.d. chan-

nels. It is shown that in two scenarios, the capacity is achieved
by the uniformly distributed signal on a hypersphere: 1) when
the number of receive antennas is much larger than the num-
ber of transmit antennas, 2) when Channel State Information
(CSI) is only available at the receiver. Note that both of these
assumptions are valid in a massive MIMO uplink channel.
We also evaluate the mutual information between the input

1Note that the new modulation is called Multi-dimensional Phase Mod-
ulation in [3]; however, in the current paper we change the name to Phase
Modulation on the Hypersphere for better intuition.

2By identity channel we refer to the channel y = x+ n.
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and the output of a discrete constellation PMH in Gaussian
i.i.d. channels, numerically.
Furthermore, in this paper, we introduce Continuous

Phase Modulation on the Hypersphere (CPMH) which has
constant instantaneous sum power in continuous time do-
main, i.e., x(t)†x(t) = constant. CPMH is constructed by
applying a pulse shaping filter to PMH signals. In this pa-
per, a novel spherical pulse shaping filter is proposed using
the spherical filtering introduced in [5]. The spherical pulse
shaping filter does not affect the peak to average ratio of the
sum power. It is shown that to get an appropriate spectrum,
we need a Cartesian pulse shaping filter after the spherical
pulse shaping filter. Note that the spectral shaping method
proposed in this paper can be also used in CPM per antenna
proposed in [4].
The rest of this paper is organized as follows: in Section

2, capacity analysis of PMH in a point to point MIMO system
with large number of receive antennas is presented. Section 3
discusses PMH capacity with no CSI at the transmitter. Spec-
tral shaping is presented in Section 4. Section 5 shows the
numerical results and finally Section 6 concludes the paper.

2. CHANNEL CAPACITY OF PMH IN A POINT TO
POINT MIMO CHANNELWITH LARGE NUMBER

OF RECEIVE ANTENNAS

In a massive MIMO system, the aggregate number of all ac-
tive user antennas is much smaller than the number of base
station antennas. In this section, a massive MIMO uplink
channel with only one active user is considered, i.e., the in-
terference by the other users is neglected. Assume that the
base station and the user are equipped with N andM anten-
nas, respectively, with N � M (e.g.,M = 2 and N = 100).
Consider the discrete channel model

y = Hx+ n, (1)

where x is the input, y is the output,H is the channel matrix
andn ∈ N (0, σ2I) is the noise vector. The transmitter sends
a PMH signal with fixed sum power. Let

x†x = M, (2)

without loss of generality. The elements of the channel matrix
are assumed to be i.i.d. Gaussian and perfectly known at both
transmitter and receiver. The capacity in such a system is
described as

C = max
f(x), x†x=M

I(x;y), (3)

where f(x) is the probability density function (pdf) of in-
put signal. By using the singular value decomposition of the
channel matrix, we have

y = Hx+ n = UΣV †x+ n, (4)

whereU and V are unitary matrices andΣ is anN ×M ma-
trix with at mostM nonzero diagonal elements. To simplify
the problem, we consider an equivalent channel

yp = Σxp + np, (5)

where xp = V †x, np = U †n and yp = U †y. Note that np

has the same statistics as n and x†
pxp = M ; therefore, the

channel described in (5) is equivalent to the channel in (4).
LetΣu be the matrix containing the firstM rows ofΣ. It

can be shown that the capacity of channel (5) is equal to the
capacity of

yp,u = Σuxp + np,u, (6)

where yp,u andnp,u consist of the firstM elements of yp and
np, respectively.
The nonzero singular values of H are the square roots

of the eigenvalues of H†H . Furthermore, for N/M grow-
ing large, all the eigenvalues ofH†H converge to the same
values. Thus, the matrix Σu converges to a diagonal matrix
with identical diagonal elements. Using this asymptotics and
considering the findings in [3], one can conclude that the op-
timum input distribution is approximately the uniform distri-
bution on the hypersphere x†x = M .
Note that, the exact capacity achieving input distribution

is not known in this case. Furthermore, it is not even clear
whether the exact capacity achieving input distribution in a
known channel is continuous or discrete. However, the anal-
ysis in this section shows that if N

M
� 1, uniform distribution

on a hypersphere is a good approximation for the capacity
achieving distribution.

3. CHANNEL CAPACITY IN A POINT TO POINT
MIMO SYSTEMWITH NO CSI AT TRANSMITTER

In this section, channel capacity of PMH in a MIMO system
is discussed when there is no CSI at the transmitter and per-
fect CSI at the receiver. This is, in fact, the common scenario
considered in massiveMIMO uplinks. In massiveMIMO sys-
tems, the users send pilots and the base stations estimate the
channel, hence there is no CSI at transmitter.
Let’s consider the channel model in (1). Furthermore, let

the elements ofH be i.i.d. Gaussian. The mutual information
between the transmitter and the receiver is calculated as [6]

I(x; (y,H)) = I(x;H) + I(x;y|H) = I(x;y|H)

= E
H0

{I(x;y|H = H0)} (7)

To calculate the capacity achieving input distribution, we con-
sider

y = HA†Ax+ n, (8)

withA being a unitary matrix. It can be shown thatHA† and
H have the same distribution when the channel coefficients
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are i.i.d. Gaussian [6]. Therefore, in the case of no CSI at the
transmitter, an equivalent channel is

y = HAx+ n. (9)

This actually shows that xopt and Axopt have the same dis-
tribution, where xopt denotes the capacity achieving input.
Furthermore, A can be any arbitrary unitary matrix. There-
fore, xopt has to be distributed uniformly on the hypersphere
x†x = M .
In [3], PMH with discrete constellation has been pro-

posed. It is a more feasible modulation to use in practice. The
constellation is made of uniformly distributed points on a hy-
persphere. To have an estimate of the mutual information of
PMH with uniformly distributed inputs on a hypersphere, we
consider discrete constellation PMH. The mutual information
between the input and the output in this case is presented in
the numerical results section.

4. SPECTRAL SHAPING IN CPMH

In this section, we present a novel spectral shaping method to
construct the continuous time modulation CPMH. In most of
wireless communication systems, pulse shaping is done us-
ing a low-pass filter in digital domain. For instance, Root-
Raised-Cosine (RRC) filters are used widely in communica-
tion systems. Nevertheless, this type of pulse shaping in-
creases PAPR. In PMH, constellation points are on the surface
of a hyperball and therefore, it meets PASPR = 0dB in dis-
crete domain. However, if we use an RRC filter, the PASPR
increases.
To design a pulse shaping method for CPMH, we need a

method to find a continuous signal on a hypersphere which
passes through all the constellation points while is has good
spectral properties. Note that a geodesic path does not do a
good job due to corners.
In the classical modulation techniques in MIMO systems,

pulse shaping is done for every antenna individually. How-
ever, for CPMH we need to do a joint pulse shaping. In the
single-antenna case, CPMH is identical to the classical CPM
modulation. Therefore, one can employ any low-pass filter
to the phase component of the complex plane, e.g., a Gaus-
sian filter in GMSK. However, in the case of several antennas,
pulse shaping is not straightforward and applying a low-pass
filter to the various phase components in a spherical coordi-
nate system results in a wide spectrum. This is in fact due
to the multiplications of sine and cosine functions when con-
verting from spherical to Cartesian coordinates. One may use
interpolation methods on the hypersphere, e.g., [7], as pulse
shaping. However, we look for a general solution of filtering
on hypersphere.
In [5], spherical filtering has been introduced by Buss

et al. which in summary is as following: consider a filter
with impulse response fn. In a Cartesian coordinate sys-
tem, filtering a data stream xn can be done by the convolu-

Fig. 1. Averaging in spherical coordinate system.

tion
∑

i fn−ixi which is a weighted average with coefficients
fn−i. Now, to apply the filter in the spherical domain, the key
point is the relation between taking average in spherical and
Cartesian coordinate systems. Note that in [5], it is shown
that for spherical filtering, the filter coefficients should meet

fi ≥ 0 and
∑

i

fi = 1. (10)

Let si be some constellation points on a hypersphere and also
sav be the average of the points on the hypersphere. Fig. 1
shows an example of a three dimensional case in which sav
is at the south pole of the sphere. Moreover, let the point śi
be obtained by projecting the points si on the tangent plane
at the point sav, where the projection is done such that the
distance between si and sav on the hypersphere is equal to
the distance between śi and sav on the tangent plane. Then,
the point sav is the average of points si in the spherical co-
ordinate system, if sav is the average of the points śi in the
Cartesian coordinate system.
Filtering on a hypersphere cannot be done in a single step

but requires iterations [5]. In [5], some iterative methods are
proposed based on the similarity mentioned above for filter-
ing in spherical and Cartesian coordinate systems. Here, we
employ the algorithm called Algorithm A1 in [5]. For a hy-
persphere with radius 1, the algorithm is summarized as fol-
lows [5]:
1. Select an initial point sav. A good initial guess is∑

i
fn−isi

‖
∑

i
fn−isi‖

.

2. Project all the points on hypersphere to the tangent plane
at the point sav. We call them śi.

3. Calculate the weighted average śav =
∑

i fn−iśi.
4. Unless śav is close enough to sav, project śav back to the
surface of hypersphere, call it sav, and go back to step 2.
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Fig. 2. The mutual information of discrete PMH with 2 anten-
nas vs. SNR in i.i.d. Gaussian channel.

In this paper, we use the filter coefficients g2

k∑
i
g2

i

for spher-
ical filtering, where gi are the RRC filter coefficients. We call
this filter RRC2. Our investigations show that filtering in the
spherical domain results in insufficient sidelobe suppression;
therefore, we propose to use a low-pass filter in the spherical
domain followed by a low-pass filter in the Cartesian domain.
The good point is that the second filter hardly increases the
PASPR since it only affects sidelobes with very low energy.

5. NUMERICAL RESULTS

5.1. Numerical results on mutual information of discrete
constellation PMH in Gaussian i.i.d. channels

To show the performance of discrete constellation PMH, we
estimate the mutual information of it using the toolbox pro-
posed in [8]. Furthermore, we use the spherical codes as the
constellation points as explained in [3].
The channel coefficients are assumed to be i.i.d. Gaus-

sian. For each realization of the channel, we first estimate the
mutual information using 105 symbols, and then, averaging is
done over 104 channel realizations. The number of the anten-
nas at receiver and transmitter are assumed to be equal. The
results for 2 and 3 antennas are shown in Fig. 2 and Fig. 3, re-
spectively. The mutual information for Gaussian input is also
plotted for sake of comparison. The figures show that PMH
with fixed constellation has an acceptable mutual information
compared to the mutual information of Gaussian input.
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Fig. 3. The mutual information of discrete PMH with 3 anten-
nas vs. SNR in i.i.d. Gaussian channel.

5.2. Numerical results on spectral shaping

Here, the numerical results of the spherical filtering are pre-
sented. An oversampling factor of 32 was used to simulate
continuous time signals. We consider a standard RRC filter
with length 1024 and roll-off factor 0.3 .
Fig. 4 shows the result for 4 antennas. The figure shows

that the RRC2 filter in the spherical domain results in only
17dB sidelobe suppression. However, by accepting a small
PASPR, we can use a post filtering by adding an RRC filter in
the Cartesian coordinate system, i.e., per antenna filtering. In
fact, the spherical filter shapes the spectrum approximately,
and the second filter kills the side lobes. The main point is
that the first filter keeps PASPR at 0dB and the second filter
operates on side lobes and changes PASPR only slightly. Note
that for the spherical RRC filter, reducing the roll-off factor
does not improve the spectrum and a roll-off around 0.3 has
the best performance.
Due to lack of space, further investigations are referred to

the extended version of this paper.
Next, the resulted PASPR due to using the second filter is

plotted in Fig. 5 versus the number of antennas. It is observed
that the spherical filtering followed by a Cartesian post filter-
ing reduces PASPR by about 0.5dB− 0.8dB compared to the
Cartesian RRC filtering. Note that in this paper we use spher-
ical codes as constellation points which have phase shifts of
up to π. In the longer version of this paper, we propose some
other mapping with better PASPR properties.
Note that the best Inter Symbol Interference (ISI) free low

pass filter for CPMH is unknown and designing appropriate
filters can still be done in the future.
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Fig. 4. PSD versus normalized frequency for different filters
for 4 antennas.
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6. CONCLUSION

In this paper, some new results on the capacity of PMH in
Gaussian channels were presented. It was proven that in the
uplink of massive MIMO with one user, the capacity achiev-

ing input is uniformly distributed on a hypersphere when
channel coefficients are i.i.d. Gaussian. Numerical results on
mutual information of discrete constellation PMH in an i.i.d.
Gaussian channel were also presented.
Furthermore, a new spectral shaping method for CPMH

was proposed using spherical filtering. It was shown that us-
ing two filters in spherical and Cartesian domains results in
excellent spectral properties while the PASPR of the systems
is hardly affected.
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