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ABSTRACT

Dirichlet process (DP) mixtures were recently introduced to

deal with switching linear dynamical models (SLDM). They

assume the system can switch between an a priori infinite num-

ber of state-space representations (SSR) whose parameters are

on-line inferred. The estimation problem can thus be of high

dimension when the SSR matrices are unknown. Nevertheless,

in many applications, the SSRs can be categorized in differ-

ent classes. In each class, the SSRs are characterized by a

known functional form but differ by a reduced set of unknown

hyperparameters. To use this information, we thus propose a

new hierarchical model for the SLDM wherein a discrete vari-

able indicates the SSR class. Conditionally to this class, the

distributions of the hyperparameters are modeled by DPs. The

estimation problem is solved by using a Rao-Blackwellized par-

ticle filter. Simulation results show that our model outperforms

existing methods in the field of target tracking.

Index Terms— Bayesian non-parametric methods, Dirich-

let process mixtures, particle filter, Rao-Blackwellization, inter-

active multiple models, target tracking.

1. INTRODUCTION

Recursive estimation plays a key role in various fields such as

financial time series, weather forecast, hydrology, radar pro-

cessing, or GPS navigation. In a Bayesian setting, this estima-

tion is based on the so-called state-space representation (SSR)

of the system. The latter significantly impacts the estimation

algorithm performance. In many applications such as target

tracking, a single SSR may not be well-suited if the system ex-

hibits dynamical changes over time. Classically, in this context,

switching linear dynamical (SLD) models can be considered

and the state vector can be estimated by using a multiple-model

(MM) algorithm [1] such as the interacting MM (IMM) [2] and

the variable-structure IMM [3]. However, these approaches rely

on the strong assumption that the system can only switch be-

tween a finite number of a priori known models. More recently,

Bayesian non-parametric (BNP) methods, which are popular in

This work is part of the common research activities between Bordeaux cam-

pus and Thales (GIS Albatros).

statistics or machine learning, have been suggested as an alter-

native [4, 5, 6]. Thanks to these approaches, which are more

and more used in various applications such as [7], any assump-

tion regarding the model distributions can be relaxed.

On the one hand, in [4], the state-transition matrix is a priori

defined but the distributions of the state model and the mea-

surement noises are assumed to be unknown. Therefore, they

are modeled by Dirichlet process mixtures (DPM) which can be

seen as infinite mixtures of probability density functions (pdf),

for instance Gaussian ones. This amounts to considering that

the noise covariance matrices can switch among an unknown

number of values, some of which may reappear more or less

frequently.

On the other hand, in [6], Fox et al. address the case of both

the unknown state-transition and observation matrices. For this

purpose, they make use of an extension of the sticky hierarchical

Dirichlet-process hidden-Markov model (HDP-HMM) to learn

an unknown number of persistent dynamical modes. This ap-

proach is flexible and can apply to a wide range of applications.

Its drawback lies in the dimension of the model parameters to be

learnt which can be very high depending on the the state-vector

size. To decrease the dimensionality of the problem, contrary to

[4] and [6], we propose to take advantage that the candidate

SSRs can be categorized in a reduced number of classes for

a given application. The SSRs within each class all share the

same functional form and are characterized by only a reduced

number of time-switching hyperparameters to be estimated. For

instance, in object tracking, the motion can be described by one

of the following well-identified model classes: constant velocity

(CV), constant acceleration (CA), constant turn (CT), etc. Each

one depends on few unknown time-switching parameters such

as the acceleration variance.

Therefore, in this paper, we present a new hierarchical model

that can be seen as an extension of the one proposed in [4].

We assume that the system dynamics can switch among a finite

number of SSR classes. The proposed model thus includes a

discrete variable that indicates the SSR class. Conditionally to

this class, the distributions of the hyperparameters are modeled

by Dirichlet processes (DPs). The system evolution is hence

described by a mixture of DPs. On the basis of our hierarchi-

cal model, we perform joint Bayesian inference of the current

model class, the state vector and the state-transition pdf at each
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instant. Since the model is conditionally linear Gaussian, a Rao-

Blackwellized particle filter (RBPF) is used [8]. In the simula-

tion results, the proposed model and the resulting estimation

algorithm are applied to target tracking.

Our paper is organized as follows: in section 2, the proposed

hierarchical model is motivated. In section 3, the RBPF that

solves the estimation problem is presented. Then, in section 4,

our approach is applied in the framework of target tracking and

compared with an IMM and an approach derived from [4]. Fi-

nally, some conclusions and perspectives are drawn in section 5.

2. BAYESIAN MODELING OF THE PROBLEM

2.1. Problem statement

Linear dynamical systems are described by a SSR as follows:

xt = Φtxt−1 + ut−1

yt = Htxt + bt
(1)

where xt is the state vector at time t, Φt the transition matrix,

yt the observation vector and Ht the observation matrix. In ad-

dition, bt is the observation noise which is uncorrelated with the

model noise ut−1.

Equivalently, the SSR (1) can be rewritten in terms of condi-

tional pdf, namely the state-transition pdf p(xt|xt−1) and the

likelihood p(yt|xt). They are used by filtering techniques to se-

quentially calculate the posterior state pdf p(xt|y1:t) from the

set of observations from time 1 to time t. Then, the state esti-

mate can be obtained as the mean or the mode of this posterior

distribution.

In many applications, a unique SSR is not sufficient to plainly

represent the system evolution. Since the seminal work of Bar-

Shalom [2], SLD systems have been considered to address this

issue. The system is then assumed to switch between various

SSRs over time. However, these approaches require to a priori

define a finite set of relevant models.

Very recently, BNP methods have been proposed to alleviate

this difficulty. In this case, both the state-transition pdf and the

likelihood function are assumed to be unknown and are rep-

resented by infinite mixtures of pdfs. In various applications,

information about the measurement-noise distribution can be

obtained. The main difficulty thus stands in conveniently de-

signing the state-vector dynamical evolution. Therefore, in the

remaining of the paper, we focus on the state-transition pdf. The

latter can be represented by the following model:

p(xt|xt−1) =

∫

θt

p(xt|xt−1,θt)dG(θt) (2)

where G is the so-called mixing distribution, p(xt|xt−1,θt) is

Gaussian and θt is a vector of latent variables including for in-

stance the components of both the state transition matrix and the

model-noise covariance matrix.

The originality of these BNP methods is that G is unknown and

assumed to be random. In a Bayesian setting, it is assigned

a prior classically chosen as a DP such as G ∼ DP(G0, α)
with G0 its base distribution and α the scale parameter. DPs are

therefore defined as probability measures on the space of prob-

ability measures.

In the remainder of this section, the theoretical background on

DPs for density estimation in the general case is first provided.

Then, a new DP-based hierarchical model to efficiently deal

with SLD systems is presented.

2.2. DP properties

The realizations G of a DP are infinite distributions. By using

the stick-breaking representation, they can be expressed as:

G(θt) =
+∞∑

j=1

πjδUj
(θt) (3)

where δUj
(θt) is the Dirac distribution centered in Uj ,

Uj ∼ G0, πj = βj

∏j−1

l=1
(1 − βl) and βj ∼ B(1, α), where B

stands for the Beta law. By inserting (3) into (2), it turns out:

p(xt|xt−1) =

+∞∑

j=1

πjp(xt|xt−1,Uj) (4)

In the above equation, p(xt|xt−1) corresponds to an infinite

mixture of the pdf p(xt|xt−1,Uj) with mixture weights πj and

latent variables contained in Uj .

Note that estimating G is an infinite-dimensional problem. For

this reason, these approaches are known as non-parametric

methods. However, Blackwell et al. showed in [9] that by

using DP, the inference procedure boils down to the estimation

of the latent vector θt. Indeed, the predicted distribution of θt
given the latent variables θ1:t−1 can be directly computed by

marginalizing G. It leads to the Polya urn representation:

p(θt|θ1:t−1, α) =
1

α+ t− 1

t−1∑

j=1

δθj
(θt) +

α

α+ t− 1
G0(θt)

(5)

It can be interpreted as follows: given the previous latent vari-

ables θ1:t−1, a new sample can either be drawn from the distri-

bution G0 with probability α
α+t−1

or take the same value as a

previous sample with probability t−1

α+t−1
. Therefore, the scale

parameter plays a key role. If α is small, the same value of θt is

drawn several times whereas if α tends to infinity, the samples

become iid from G0.

As for the estimation problem, it becomes all the more difficult

as the dimension of θt is high. For instance, θt can be com-

posed of all the elements of the state matrices. However, in

many applications, the state transition and model-noise covari-

ance matrices can only take specific functional forms. A state

model can thus be characterized by a reduced number of hyper-

parameters.

In the next subsection, we suggest a new hierarchical model to

take advantage of this information. It consists of a mixture of

DPs.
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2.3. Proposed hierarchical model

In the following, we extend the representation (2) by introduc-

ing a latent variable that refers to a class of state models. All the

state models in a class share the same functional form but differ

with one another by a reduced number of hyperparameters.

Let zt ∈ {1, ...,M} denote the index of the actual state-model

class at time t. Here, the sequence {zt}t>0 is assumed to be a

Markov chain with transition probability matrix (TPM) denoted

as Π = {πij}
j=1,...,M
i=1,...,M . Note that unlike standard MM-based

approaches, zt does not refer to a well-defined model but to a

class that comprises an infinity of models.

Conditionally to zt, the state-transition pdf is therefore de-

scribed by a mixture of DPs as suggested in (2). The specificity

of our work is hence that there are as many DPs as possible

model classes. They are denoted as {Gm}m=1,...,M . Each one

is characterized by its own base distribution Gm
0 and its scale

parameter αm.

In addition, for each model class, the functional forms of the

state matrices are known. Hence, θt is no longer of high di-

mension but is only composed of few parameters that fully

characterize the matrices to be estimated.

At this stage, given the above considerations, the relationships

between zt, G
m, θt, xt and yt can be described by the follow-

ing hierarchical model:

Gm ∼ DP(Gm
0 , αm) for m = 1, ...,M (6)

zt|zt−1 ∼ πztzt−1
(7)

θt|{zt, {G
m}m=1,...,M} ∼ Gzt(θt) (8)

xt|{xt−1, θt, zt} ∼ p(xt|xt−1, θt, zt) (9)

yt|xt ∼ p(yt|xt) (10)

In this work, linear Gaussian SSRs of the form (1) are consid-

ered. Therefore, the pdfs p(xt|xt−1, θt, zt) and p(yt|xt) are

Gaussian.

Similarly to subsection 2.2., the unknown distributions

{Gm}m=1,...,M can be integrated out based on the Polya urn

representation. However, the latter must be modified to take

into account the switching between the different model classes.

The predictive distribution of θt becomes:

θt|θ1:t−1, zt ∼
1

αzt + nzt

t−1∑

j=1
s.t. zj=zt

δθj
(θt) +

αzt

αzt + nzt

Gzt
0 (θt)

(11)

where nzt is the number of times the model class zt has previ-

ously appeared.

The hierarchical model defined by (6)-(10) thus reduces to (7),

(11), (9), and (10) as depicted by Fig. 1. The objective is then

to on-line estimate the joint posterior distribution of all the un-

known parameters p(x0:t, z0:t,θ0:t|y1:t). The latter does not

admit a closed-form expression due to the non-linearity and

non-Gaussianity of the proposed model.

In the next section, we show how to address this issue by using

a Rao-Blackwellized particle filter.

zt−1 zt zt+1

Gzt

αztGzt
0

θt−1 θt+1θt

xt−1 xt xt+1

yt−1 yt+1yt

... ...

... ...

......

... ...

model class
index

DP

latent variable

state vector

observation

Fig. 1. Graphical representation of the hierarchical model

3. PARTICLE FILTERING ESTIMATION

The posterior distribution can be factorized as follows:

p(x0:t, z0:t,θ0:t|y1:t)

= p(x0:t|z0:t,θ0:t,y1:t)p(θ0:t, z0:t|y1:t)
(12)

Then, it should be noted that if the sequences of model classes

z0:t and model parameters θ0:t were known, the SSR of the con-

sidered system would become linear and Gaussian. Therefore,

the distribution p(x0:t|z0:t,θ0:t,y1:t) would be Gaussian and

its mean vector and covariance matrix could be calculated by

optimal Kalman filtering. To take advantage of this structure,

a RBPF can be used to perform the estimation. The principle

is to analytically solve a part of the estimation problem so that

only the distribution p(θ0:t, z0:t|y1:t) is approximated using se-

quential Monte Carlo sampling. More precisely, this posterior

distribution is approximated by a discrete distribution:

p̂(θ0:t, z0:t|y1:t) =

N∑

i=1

wi
tδ{θi

0:t,z
i
0:t}

({θ0:t, z0:t}), (13)

where the support points {θi
0:t, z

i
0:t}i=1,...,N , called the parti-

cles, are generated recursively using sequential importance sam-

pling and the weights {wi
t}i=1,...,N sum to one. As for the es-

timation of the state vector xt, each particle is associated with

a Kalman filter (KF) that recursively updates the mean vector

and the covariance matrix, denoted µi
t and Σi

t respectively, of

the following conditional distributions:

p(xt|z
i
0:t,θ

i
0:t,y1:t) = N (xt;µ

i
t,Σ

i
t). (14)

Finally, by marginalizing out θ0:t, the posterior distribution of

the state vector is approximated by a mixture of Gaussian dis-

tributions:

p̂(xt|y1:t) =
N∑

i=1

wi
tN (xt;µ

i
t,Σ

i
t) (15)

Note that the particles are propagated according to the prior

models (7), (9) and (11), hence the weights are merely propor-

tional to the likelihood p(yt|y1:t−1, z
i
t,θ

i
t). The latter is com-

puted at the update step of the KF.
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Based on (13) and (15), the state estimates are computed. We

consider the maximum and the mean of the posterior distribu-

tions for the model class and the state vector respectively.

ẑRBPF

t = argmax
m∈{1,...,M}

N∑

i=1

δzi
t
(m) and x̂RBPF

t =
N∑

i=1

wi
tµ

i
t (16)

In the next section, our approach is applied in the context of

target tracking.

4. APPLICATION TO TARGET TRACKING

We consider that the target can follow either a CV or a CA mo-

tion model at each instant.

In this case, the state vectors satisfy1:

xCV
t = [xt, ẋt]

T ; xCA
t = [xt, ẋt, ẍt]

T (17)

where xt denotes the position, ẋt the velocity and ẍt the accel-

eration. In addition, the transition and observation matrices of

both model classes are defined as follows:

ΦCV =

[
1 T
0 1

]
; ΦCA =



1 T T 2/2
0 1 T
0 0 1




HCV = [1 0] ; HCA = [1 0 0]

(18)

where T is the sampling period. The model-noise covariance

matrices for both motion models can be respectively defined as:

QCV= σ2
CV

[
T 3

2

T 2

2
T 2

2
T

]
;QCA = σ2

CA




T 5

20

T 4

8

T 3

6
T 4

8

T 3

3

T 2

2
T 3

6

T 2

2
T


 (19)

where σ2
CV and σ2

CA are the acceleration and jerk variances re-

spectively. The associated so-called precision parameters are

thus γCV = 1

σ2

CV

and γCA = 1

σ2

CA

.

4.1. Resulting setting of the hierarchical model

In this subsection, let us give some information about the model

class index, the latent variable and the DP.

As two model classes are considered, zt ∈ {1, 2}. The model

class index refers to the CV-motion model and the CA-motion

model when it is equal to 1 and 2 respectively. In addition, its

Markov chain is characterized by the TPM denoted as ΠDP .

Given (19), the functional forms of both model-noise covari-

ance matrices are known and only depend on the model-noise

variances which can switch between different values over time.

At each instant, the latent variable θt hence contains γzt which

is the precision parameter (i.e. the variance inverse) of the mo-

tion model indexed by zt.
In addition, as suggested in [4], the DPM base distribution G0 is

defined from a Gamma conjugate prior Γ(azt , bzt) on the pre-

cision parameter of the hierarchical Dirichlet process. In order

1Note that for the sake of simplicity, we focus on the x dimension, but for

2D or 3D target tracking, it should be generalized to the y and z axis.

to consider a weakly informative setting for both motion mod-

els, a1 = 4, b1 = 40 and a2 = 10, b2 = 0.01. Both resulting

distributions are represented in Fig. 2. Note that the span of

possible values taken by {γzt}zt=1,2 are not the same due to the

different units of the respective model-noise variances.
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Fig. 2. Gamma prior on the accuracy parameter γ

4.2. Simulation protocol

The relevance of our approach is analyzed by applying it to a

set of trajectories generated from M = 2 motion models: one

CA motion model and one CV motion model. At each instant

(T = 1), the system can switch between both motion models

according to the following TPM:

[
0.95 0.05
0.05 0.95

]
.

As long as the target is described by the same model class, the

model-noise standard deviation (std) remains unchanged and

can take one among two possible values. Thus,

σCV ∈ {5.10
−2; 10−1}m.s−

3

2 leading to γCV ∈ {400; 100},

while σCA ∈ {2.5, 4.5}m.s−
5

2 leading to γCA ∈ {0.05, 0.16}.
In addition, the measurement-noise variance is set at 25m2. The

results are obtained for target trajectories of 500 samples and

our algorithm is run with N = 2000 particles. Three different

settings are tested for the TPM. Thus, its diagonal elements de-

noted pii are respectively set at 0.95, 0.9 and 0.8 corresponding

to a mean sojourn time of 20T , 10T and 5T .

Our hierarchical DP-based approach, denoted DP, is then com-

pared with several filtering approaches:

1/ a KF based on a CA motion model, denoted Kal-CA, whose

model-noise std is set at σCA = 4.5m.s−
5

2 .

2/ an IMM combining two KFs [2]. The first one is based on a

CV motion model with σCV = 10−1m.s−
3

2 . The second one

is based on a CA motion model with σCA = 4.5m.s−
5

2 . Once

again, three different settings are tested for the TPM ΠIMM .

3/ A method derived from Caron’s work [4], denoted by DPM.

It was implemented with a CA motion model where all the

elements of its model-noise covariance matrix are assumed

unknown and are hence estimated.

4.3. Simulation results

First, let us give some comments on the computational costs.

According to our tests, DP-based approaches are more compu-

tationally expensive than the IMM and Kal-CA. Nevertheless,

compared to DPM, the computational cost of the proposed al-

gorithm is lesser. Then, let us analyze the root mean square

error (RMSE) between the state vector and its estimate for 500
samples. Note that the RMSE related to the measurement noise,
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i.e. without applying any filtering approach, is equal to 4.01.

Kal-CA IMM [2]

pii = 0.95 pii = 0.9 pii = 0.8
3.48 3.22 3.39 3.61

DPM [4] DP

pii = 0.95 pii = 0.9 pii = 0.8
3.34 2.71 2.89 3.02

Table 1. RMSE averaged over 200 Monte Carlo simulations.

According to Table 1., the RMSE of DPM is smaller than the

one associated to Kal-CA because it allows the time-switching

model-noise covariance matrix to be estimated over time. How-

ever, its RMSE is higher than the one of the IMM because this

latter provides better estimates when the trajectory corresponds

to a CV model.

In addition, the proposed approach DP outperforms both the im-

plemented IMM algorithm and DPM. Indeed, the model-noise

variances of the motion models are estimated at each instant

with our approach whereas they are set at predefined values

when an IMM is used. Moreover, the model class index2 is bet-

ter estimated with the proposed approach than with the IMM.

This is illustrated in Fig. 3 where the model class index estima-

tion obtained with both the IMM algorithm and our method is

given for one realization of the target trajectory. When averag-

ing the model index estimation over 500 Monte Carlo simula-

tions, one can notice that the proposed approach estimates the

actual model class index for 96% of the samples whereas it is

91% for the IMM. Indeed, due to the IMM merging strategy,

the weights in favor of a given model class are not necessarily

clear-cut.
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Fig. 3. Comparison of the model class estimation

Concerning the setting of the proposed approach and the IMM,

if the diagonal elements of their corresponding TPMs are not

set at 0.95 but at different values, their performance is slightly

degraded. However, our approach is more reliable than the IMM

since it does not require the setting of the model-noise variance.

Finally, the relevance of our approach is confirmed by the esti-

mation of the model-noise distribution on the position compo-

2When using the IMM, the model class index at each instant corresponds to

the model with the so-called highest a posteriori weight [2].

nent xt, which is compared with the actual one. See Fig. 4.
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Fig. 4. Model-noise distribution estimate using DP

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose a new DP-based hierarchical model for

SLD systems. Our approach has the advantage of being flexible

while decreasing the dimensionality of the estimation problem

compared to a complete non-parametric method. We apply our

approach in the field of target tracking and show its relevance

compared to existing methods. As a perspective, we are in-

vestigating the performance of the proposed approach when the

classes chosen for the estimator do not necessarily match the

ones used for the target trajectory. We also plan to study issues

such as stability and tracking speed [10].
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