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ABSTRACT
In real-life audio scenes, many sound events from differ-

ent sources are simultaneously active, which makes the au-
tomatic sound event detection challenging. In this paper, we
compare two different deep learning methods for the detec-
tion of environmental sound events: combined single-label
classification and multi-label classification. We investigate
the accuracy of both methods on the audio with different lev-
els of polyphony. Multi-label classification achieves an over-
all 62.8% accuracy, whereas combined single-label classifi-
cation achieves a very close 61.9% accuracy. The latter ap-
proach offers more flexibility on real-world applications by
gathering the relevant group of sound events in a single clas-
sifier with various combinations.

Index Terms— Sound event detection, deep neural net-
works, multi-label classification, binary classification, audio
analysis

1. INTRODUCTION

Sound event detection (SED) systems aim to recognize and
distinguish particular events related to human, nature or ma-
chine presence. In realistic environments, there are often mul-
tiple sound sources and the sound events originating from
them can overlap in time. Birds singing, footsteps, motorbike
engine etc. can be given as examples for the sound events
in realistic environments. SED systems tackle the problem
for two different cases: monophonic and polyphonic detec-
tion. In monophonic detection, the aim is to find the promi-
nent event in the sound data. It is used in video keyword
tagging [1] and real-life event and context detection [2, 3].

Polyphonic SED is capable of detecting multiple sound
events in the same time instance of the sound data. Each in-
stance is associated with a set of labels, i.e., the labels of the
sound events that are active in the given instance. The aim is
to map each instance with its associated label set. The num-
ber of sound events active in an instance is not known a priori,
which introduces a different level of complexity in detection.

Polyphonic SED systems require multi-label classifica-
tion, which is not widely experimented in audio information
retrieval tasks. Generalized Hough transform (GHT) voting
system has been used to recognize overlapping sound events
by summing up the local spectrogram keypoint information
to produce onset hypotheses [4]. In [5], non-negative matrix

factorization (NMF) has been used to first decompose the au-
dio into streams and then recognize a single event from each
stream by using prominent stream selection or stream elimi-
nation. In our previous work we proposed to use multi-label
deep neural networks (DNN) for polyphonic SED and showed
that it exceeds the state-of-the-art NMF + hidden Markov
model (HMM) based approach [5] in accuracy [6].

DNNs are classifiers that are capable of extracting high
level representations of their inputs through the multiple hid-
den layers. This has been found to provide better discrimi-
nation capability in certain pattern recognition tasks. Deep
learning methods have recently given state-of-the-art results
for many applications in environmental SED [2,6] and speech
recognition [7].

In this paper, we explore the use of DNNs in environmen-
tal SED with two different approaches: multi-label (ML) and
combined single-label (CSL) methods. The proposed meth-
ods are illustrated in Figure 1. First, we train DNNs with
multi-label outputs with polyphonic material in a supervised
setting. Then, we train several DNNs with single-label out-
puts again with the same polyphonic material in a supervised
setting. We combine the outputs of the single-label DNNs to
obtain a multi-label output for each time instance. In [8], it
is claimed that decomposing a multi-label classification into
several binary classification problems will lose the correla-
tion information between different labels in a single instance.
However, the flexibility of making different sets of labels for
different applications can be valuable and useful at the ex-
pense of slightly decreased accuracy for some applications,
especially in SED systems. Moreover, using a set of single-
label classifiers allows dynamic inclusion of new labels by
training classifiers only for the new sound events instead of
re-training the complete framework. To the best of our knowl-
edge, this is the first work that compares these two deep learn-
ing approaches on polyphonic SED. Both methods are exper-
imented on realistic sound material with single element.

The organization of this paper is as follows. The problem
is stated and the DNN input and target output is explained in
Section 2. The methodology, including ML and CSL DNN
classification methods, are explained in detail in Section 3.
The experiment material, evaluation procedure and experi-
mental results are given in Section 4. Finally, comments and
conclusions are given in Section 5.
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Fig. 1: Framework for the proposed CSL DNN and ML DNN classification methods.

2. PROBLEM STATEMENT

The goal of polyphonic SED is to estimate the start and end
times of sound events in an audio signal, and classify the
events into their predefined classes. When the audio is pro-
cessed in short frames, this can be viewed as a multi-label
classification problem. Multi-label learning tackles the prob-
lems where each instance in the training set can be associated
with multiple labels. When it comes to multi-label environ-
mental SED, the sound data typically contains overlapping
events, e.g, a sound recording taken from a street may contain
traffic noise, speech and the rain sound all at the same time.

2.1. Audio Representation

In order to do robust classification on the polyphonic material,
one should choose the features that makes a good discrimina-
tion over the possible outcomes. Mel band energies are used
as audio features in this work, since they have been proved to
obtain better performance over the traditional Mel frequency
cepstral cofficients (MFCC) in polyphonic SED and speech
recognition [6, 7]. The reasoning for this can be that DNNs
do not especially require their inputs to be uncorrelated and
by applying discrete cosine transform (DCT), MFCCs discard
some information from the audio material [9]. The recordings
are first amplitude normalized, divided into frames and then
short-time Fourier transform (STFT) is applied on 50 ms time
frames with 50% overlap. Mel filterbank with 40 Mel bands
is used to extract the feature vector ut in each time frame,
where t denotes the position in the domain.

In order to make use of the dynamic properties of the au-
dio, the feature vectors are concatenated with their two pre-
ceding and two succeeding feature vectors. This method is
known as context windowing. Concatenated feature vector xt
is obtained as xt = [uT

t−2 uT
t−1 uT

t uT
t+1 uT

t+2]T, where ut de-
notes the extracted feature vector. The concatenated feature
vector xt is used as a single training instance for the DNN.

2.2. DNN Target Output

The training of the network is performed in a supervised set-
ting. The start and end times for each sound event in a record-
ing are manually annotated each time they occur in the record-

ing. For each time frame, a target output vector yt of length
N is obtained, where N is the total number of possible sound
events. The elements of the target vector yt are binary and
determined as

yt(l) =

{
1, if lth event is active in frame t

0, if lth event is not active in frame t
(1)

where yt(l) is the lth entry of target output vector yt and 1 ≤
l ≤ N .

3. METHODOLOGY

We consider two methods for encoding the presence of si-
multaneous events in an audio recording. One method is to
train a single-label classifier for each label l and then combine
the outputs from each classifier to obtain a multi-label output.
Second method is to train a multi-label classifier, which pro-
duces a multi-label detection output vector.

3.1. Combined Single-Label DNN classification

For the CSL DNN classification, each label l is trained and
tested with a different DNN, independent from other labels.
The input features are extracted from polyphonic sound sig-
nals. The reasons for using polyphonic signals is as follows.
Firstly, even for single-label classification, the sound events
are hardly ever isolated in a realistic environment and it is dif-
ficult to separate signals produced by individual sources. Sec-
ondly, using polyphonic data makes the comparison between
the CSL DNN and the ML DNN methods easier to interpret
and analyze.

CSL DNN provides significant flexibility on real-world
applications. To illustrate, if the number of sound events in
a database is N , then N different models can be trained and
grouped together in various combinations depending which
of the classes are of interest in a certain application. Besides,
new classes can be easily added to the overall CSL DNN sys-
tem by training a single-label DNN for the new class with the
additional database.

The single-label DNN architecture is composed of an in-
put layer, two or more hidden layers and output layer with a
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single output unit. Fully-connected feed-forward DNNs are
used in this work. Starting from h1 = x, the outputs hk of the
units for layer k are calculated as

gk = Wkhk−1 + bk, 2 ≤ k < M (2)

hk = f(gk) (3)

where W ∈ RD×S is the weight matrix between layers k − 1
and k, D and S are the number of units for layers k − 1
and k, respectively, b ∈ RS is the bias vector for layer k,
f(·) is the activation function applied element-wise on the
output of each unit in layer k, and M is the total number
of layers in the DNN. For the hidden layer activation func-
tions, maxout [10] function is used. Instead of applying a
conventional non-linearity on the weighted sum gk, maxout
function groups the weighted sums and passes the maximum
to hk, increasing the sparsity of the gradients and preventing
the network suffering from the vanishing gradients since the
activation outputs are unbounded [11]. For the output layer
activation function, the more conventional logistic sigmoid
function is chosen. Since the sigmoid activation function out-
put hM is bounded between 0 and 1, it is possible and logical
to interpret the DNN output as the detection probability. For
each training instance xt, the CSL DNN output with single
element hM is used as the source-presence prediction ŷt.

Each single-label DNN is trained with the corresponding
target output yt(l) for label l. In order to estimate the dis-
tance between the source-presence prediction and the target
output for label l, cross-entropy cost function Cl(ŷt, yt(l)) is
calculated as

Cl(ŷt, yt(l)) = −yt(l) log(ŷt)− (1− yt(l)) log(1− ŷt) (4)

where yt(l) is either 0 or 1 and ŷt ∈ [0, 1]. Cl(ŷt, yt(l))
is guaranteed to be non-negative and when yt(l) and ŷt are
closer to each other, it goes closer to zero. Therefore, cross-
entropy cost function is to be minimized by updating the
weight W and bias b vectors. For this purpose, stochastic
gradient descent algorithm (SGD) is used. The gradients in
each layer are computed using the backpropagation algo-
rithm [12].

When the separate training for each label is finished, the
test instances are evaluated by the single-label DNNs and
the source-presence predictions ŷt are obtained. The source
presence-predictions from each single-label DNN are com-
bined in the multi-label vector ŷt = [ŷt(1) ŷt(2)...ŷt(N)].
Then, ŷt is binarized by thresholding with a certain constant,
leading to a binary estimation vector zt of length N . The
effects of the binarizing threshold is examined in Section 4.

3.2. Multi-Label DNN classification

ML DNN training differs from the CSL DNN training only in
the way that the number of units in the output layer is equal to
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Fig. 2: The percentage of the amount of the test material as a
function of the polyphony level.

the number of sound events N , therefore we get the source-
presence prediction vector ŷt of length N for each frame t.
This leads to another information to be learned: the correla-
tion structure between the events. Some of the events may
appear together in a large number of training instances and it
can be a valuable information for the DNN.

Instead of calculating the cross-entropy cost function for
a single-label, ML DNN computes the cost function as

C(ŷt, yt) = −yt · log(ŷt)− (1− yt) · log(1− ŷt) (5)

where the operator (·) denotes the dot product and the loga-
rithm operator is applied element-wise. The cost value is the
sum of the costs over each label and therefore depends on the
source-presence predictions for each label l.

3.3. Post-processing

Our experiments with realistic audio material showed that en-
vironmental sound events typically have some short bursts of
less active periods. To illustrate, a dog gives a small break to
breathe before each bark, or the footsteps make sounds peri-
odically. Since the annotation of the audio material is done
with a rather coarse time resolution, these less active bursts
are mapped to a sound event of which they do not possess
the spectral characteristics. This results with a rather noisy
behaviour in DNN outputs.

A median filtering based post-processing approach is im-
plemented to filter this noise and smoothen the outputs in
the testing stage for both CSL DNN and ML DNN. For each
frame, the post-processed output ẑt is obtained by taking the
median of the binary outputs zt in a 10-frame window (corre-
sponds to 250 ms of audio) as

ẑt =

{
1, if median(z(t−9):t) = 1

0, otherwise
(6)

The method is applied on each label separately and continued
by sliding this 10-frame window when every new frame is
processed through the DNN.
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Fig. 3: Detection accuracy vs. binarizing threshold for ML
DNN and CSL DNN.

4. EXPERIMENTS AND RESULTS

4.1. Sound Material and Setting

The evaluation of both CSL and ML DNN methods are per-
formed on a sound database collected from highly realistic
everyday environments. Recordings from 10 different envi-
ronments, such as beach, bus, street etc. are used to gather
a database of 1133 minutes. From the recordings, 61 most
prominent events, such as clapping, dogs barking, cash regis-
ter beep etc. are selected to be evaluated. The recordings have
varying number of active sound events in each instance, i.e.,
the frames have varying polyphony levels. The amount of test
material according to their polyphony levels are illustrated in
Figure 2. The label cardinality, i.e., the average number of
active events in each frame is 2.55. The database is divided
into non-overlapping groups as 60% training, 20% test and
20% validation sets. Validation set is not used in training and
it is required to determine the optimum parameters without
overfitting the network on the training set. More detailed in-
formation on the sound database can be found in [13].

DNN hyper-parameters such as learning rate, hidden unit
number, initial weight and bias range etc. are selected by do-
ing a grid search over possible values to get the best accuracy
on the validation set. The best performance is obtained with
two hidden layers of 800 units for ML DNN and two hidden
layers of 400 units for CSL DNN. The learning rates for both
methods are 0.02.

4.2. Evaluation Metric

The methods are evaluated by using two different metrics that
are commonly used in multi-label evaluation. First one is the
block-wise F1 score evaluation metric. A sound event is re-
garded as correctly detected if it is marked as present in any
instance of the time block and if it is also present in the an-
notations of the time block. Missed and wrongly detected
events are calculated in the same manner. This approach fits
well with the goal of environmental SED, since it is rather in-
terested in detecting the event rather than the exact start and
end times. Precision and recall are calculated according to the
number of correctly detected, missed and wrongly detected
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Fig. 4: Hamming loss vs. threshold for CSL DNN and ML
DNN classification.

events. F1 score, the harmonic mean of the precision and re-
call, is calculated in non-overlapping one second blocks. The
final F1 score is calculated by averaging the F1 scores in the
one second time blocks of the test dataset and presented as the
accuracy percentage.

The second multi-label evaluation metric is Hamming
loss [14]. It evaluates how many times a frame is misclas-
sified. It implements exclusive-or (xor) operation between
binary estimation vector ẑt and target output vector yt as

Hamming loss(ẑ, y) =
1

T

T∑
t=1

1

N
(ẑt ∆ yt) (7)

where T is the number of time frames, N is the number of
sound events and the operator ∆ gives the symmetric differ-
ence between ẑt and yt as

ẑt(l) ∆ yt(l) =

{
0, if ẑt(l) = yt(l)
1, otherwise

(8)

4.3. Results

While converting the DNN outputs ŷt into binary form as zt,
several threshold values have been experimented. For various
thresholds, the average F1 score is presented as the accuracy
percentage for ML DNN and CSL DNN in Figure 3. Both
methods provide a huge improvement over the state-of-the-art
NMF+HMM-based method in [5], which provides 44.9% ac-
curacy on the same database. For both methods, the accuracy
takes its maximum value around threshold 0.5, which indi-
cates that DNN outputs make a balanced probability distribu-
tion estimation between 0 and 1. Hamming loss results from
Figure 4 also supports this theory. Hamming losses for both
methods reach to their minimum around threshold 0.6 (note
that they are very close for thresholds above 0.7). ML DNN
classification provides a 2-3% better accuracy compared to
CSL DNN for low threshold values, but the situation reverses
for higher threshold values. This can be explained with the
fact that the whole activity of a single frame is bundled in
one single DNN output for CSL DNN, whereas in ML DNN,
it is distributed in all the events. Therefore, in a polyphonic

23rd European Signal Processing Conference (EUSIPCO)

2599



1 2 3 4 5 6

40%

60%

80%

64
61

63

67

72 72

62 62 62

66
68 69

Polyphony Level

A
cc

ur
ac

y
Pe

rc
en

ta
ge

Multi label DNN Combined Single Label DNN

Fig. 5: Detection accuracy vs. polyphony level.

frame, for each active event, the source-presence predictions
are higher for CSL DNN than ML DNN and better discrimi-
nation is obtained with high threshold values.

The detection accuracy is calculated separately for differ-
ent levels of polyphony and examined in Figure 5. The bina-
rizing threshold is set to 0.5. When the accuracy is averaged
among the polyphony levels according to the data amount for
each polyphony level, CSL DNN achieves an overall 61.9%
accuracy, while ML DNN achieves 62.8% accuracy. CSL
DNN classification provides very similar accuracy compared
to ML DNN, regardless of the polyphony level. The results
show that decomposing a multi-label sound event classifica-
tion problem into multiple single-label problems do not suffer
from losing the correlation structure between the labels.

5. CONCLUSIONS AND COMMENTS

In this paper, two different deep learning methods are pro-
posed and compared for polyphonic SED in real-life environ-
ments. The first method consists of using a multi-label DNN
for classification of all possible sound events, whereas the
second method uses a single-label DNN for each single sound
event and combines the outputs of each DNN for a single time
frame. Although the hypothesis was that CSL DNN would be
affected from losing the correlation information, it provides
very similar accuracy compared to ML DNN. CSL DNN also
presents multiple implementation options by grouping differ-
ent event models together. For the future work, it would be
interesting to apply CSL DNN on other multi-label classifica-
tion problems. Also, context dependent CSL DNN methods
can be experimented by grouping the CSL DNN models for
the events that are likely to occur together, thus creating a
single classifier for a certain context. Finally, an interesting
path would be to apply other multi-label learning methods on
sound event detection and see if our conclusion for multi-label
DNN learning is extensible for other approaches.
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