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ABSTRACT

We consider a scenario in which a number of sensor nodes

monitor an area, where several sources are active. Each node

has an interest to estimate the signal of a particular source

using measurements that, unavoidably, are mixtures of the

source signals. Nodes could improve the quality of the sig-

nal of interest if they were able to use the signals measured

by other nodes, however, in a such a case, communication

costs must be properly taken into account. To this end, coali-

tional game theory is used in our study. In the case where

the communication cost is zero, we prove that the cooper-

ation of all nodes is beneficial for all. In contrast, when the

communication costs are taken into account, we employ a dis-

tributed merge-split coalition formation algorithm to organize

the nodes into stable cooperative groups. Simulation results

are in accordance with the theoretical findings.

Index Terms— Blind source separation, coalitional game

theory, coalition formation algorithms, distributed process-

ing, NTU games.

1. INTRODUCTION

With the continuous decrease in the cost of electronics, ubiq-

uitous miniaturized computing devices equipped with various

sensors and communication capabilities have emerged. Mak-

ing such devices able to self-organize and cooperate, consti-

tutes a major challenge that will offer the potential to signif-

icantly improve the quality of the services provided. In this

setting, we focus on a case where the objective is to organize

the nodes in cooperative groups in order to separate and/or

enhance the signals of the sources that are active in an area of

interest.

The examined signal enhancement scenario is in close re-

lation to the problem of blindly separating mixtures of inde-

pendent signals, [1]. More recently, the literature has also
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Fig. 1. K sources emit signals x1, . . . , xK , respectively. Node

n uses Mn sensors to measure mixtures of the source sig-

nals. Nodes form coalitions, exchange measurements, and

each node n provides an estimate of its source of interest xkn
.

focused on various aspects regarding the distributed acquisi-

tion and processing involved in the blind source separation

problem [2–5]. We consider these works as the closest to our

study. In this work, we assume that the blind source sepa-

ration problem has been solved - e.g., using one of the ap-

proaches mentioned above - and the associated mixing model

is thus known by the nodes of the network. We turn our at-

tention to the subsequent signal enhancement operation of the

network, and consider that each node is a rational and selfish

agent that pursues to maximize its benefit. However, due to

communication or other costs, each node chooses properly to

use the measurements of only a subset of nodes. Also, this

node will only send its measurements to nodes with whom it

collaborates sharing data. In this setting, we use coalitional

game theory [6] to construct such sets of nodes and to study

when such coalitions are stable.

Game theory has been applied to a wide range of disci-

plines such as economics, political sciences, philosophy and

more recently, to engineering [7]. In general, game theory can

be defined as the study of mathematical models of conflict

and cooperation between intelligent rational decision-makers.

Unlike non-cooperative game theory where the modelling

unit is a single player, coalitional game theory, that is the

focus of this work, seeks for optimal coalition structures of

players in order to optimize the worth of each coalition. In
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accordance with [6], coalitional games can be categorized as

canonical coalitional games, coalition formation games, and

coalitional graph games. In this work, the focus is put on the

first two categories. To the best of the authors knowledge, this

work is the first to address the problem of a distributed signal

enhancement from a coalitional game-theoretical aspect.

The rest of the paper is organized as follows: Section 2

provides the formulation of the problem at hand. Section

3 defines and analyses two coalitional games, one with no

communication costs and one where communication costs are

taken into account. Next, Section 4 describes a coalition for-

mation algorithm for the examined games. Finally, Section

5 presents numerical results that support the theoretical find-

ings, and then the work is concluded.

2. PROBLEM FORMULATION

As demonstrated in Fig. 1, K sources are active at some place

of interest. They emit the signals x1(t), x2(t), . . . , xK(t). We

assume that these signals are mutually independent real val-

ued random variables with zero mean. For reasons that will

become more clear in the sequel, we also assume that each

one of the random variables that model the sources has vari-

ance equal to one. Let also x1, x2, . . . xK denote instances

of the respective random variables. Consider also that, in the

same area, N nodes monitor the sources, where node n uses

Mn sensors (for example, microphones for audio sources) and

in general Mn ≥ 1. Let also the set N = {1, 2, . . . , N} de-

note the set of all the nodes. The measurements of node n
are denoted by the vector yn ∈ RMn×1. We assume that the

measurements are given by the linear model

yn = Anx+wn (1)

where x = [x1x2 · · ·xK ]T, An ∈ RMn×K is a matrix

that models the attenuation of the source signals and wn ∈
RMn×1 denotes zero mean additive white noise with wn ∼
N(0,Σn). We consider also the model that gives the mea-

surements of all nodes if we stack all vectors yn into vector

y = Ax+w (2)

where y ∈ RM×1, M =
∑N

n=1 Mn is the number of all mea-

surements, A ∈ RM×K is constructed by stacking the matri-

ces An and similarly w ∈ RM×1 is constructed by stacking

the respective noise vectors wn on top of each other.

We assume that the so-called mixing matrix A in (2) is

known. In practical cases, matrix A can be estimated using

a Blind Source Separation (BSS) algorithm [1]. Since most

BSS algorithms require the number of measurements to be at

least equal to the number of sources, M ≥ K should hold for

the computation of matrix A. Also, due to the inherent scale

ambiguity in BSS algorithms, we assume that all sources have

unit variance, which is a common assumption in BSS litera-

ture.

Consider now that node n is interested in the estimation

of source kn ∈ {1, 2, . . . ,K} but, due to communication or

other costs, it can only utilize a subset of the measured sig-

nals, given by

yS = ASx+wS , (3)

where AS (respectively wS ) is generated from A (respec-

tively w) if we keep only the Ai (respectively wi) with i ∈
S ⊆ N . The set S denotes the cooperating nodes that ex-

change their measurements to aid each other in the signal en-

hancement task. Our scope is to study the conditions under

which it is beneficial for the nodes to take part in such a coali-

tion.

3. SIGNAL ENHANCEMENT GAMES

Coalitional games are also categorized to (a) Transferable

Utility (TU) games and (b) Non Transferable Utility (NTU)

games [7]. In TU games, a real number is used to measure

the utility of any subset of players. In NTU games, examined

here, the value of a coalition is a vector used to assign each

member of the coalition its own utility.

3.1. A Game with no Communication Costs

Let us define an NTU coalitional game (N , υ), where the set

N is the set of players (nodes) and υ(S) ⊆ R|S| contains the

payoff vectors achievable by the players in coalition S . In

particular, if p ∈ υ(S) is a payoff vector, then the payoff of

player n ∈ S is an element of p that we define as

pn(S) = −E
[

(xkn
− x̂kn,S)

2
]

. (4)

That is, the payoff of player n in S is the negative of the

Mean Squared Error (MSE) achieved for the estimation of

the source of interest xkn
. Each player is rationally selfish

and attempts to maximize its own payoff, or equivalently to

minimize its MSE. Taking into account the linear model of

(3), the estimate x̂kn,S is defined as

x̂kn,S = bT
kn,SyS , (5)

i.e., as the output of a linear filter bkn,S that acts on the avail-

able data yS . The choice of the filter coefficients corresponds

to the action/strategy adopted by the respective player.

3.1.1. Analysis of the Game with no Communication Costs

Let us first characterize the sets υ(S) for S ⊆ N . According

to [8], the optimal filter bkn,S is given by the equation

b
(OPT)
kn,S

= R−1
yS ,yS

ryS ,xkn
(6)

where RyS ,yS
= E

[

ySy
T
S

]

and ryS ,xkn
= E [ySxkn

] are

the auto-correlation matrix of the input signal and the cross-

correlation vector between the input vector and the desired
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output source, respectively. Now, using equation (3), it is easy

to verify that

b
(OPT)
kn,S

=
(

ASA
T
S +ΣS

)−1
ASdkn

, (7)

where ΣS is the covariance matrix of the noise at the sensors

of the nodes in the set S and dkn
∈ RK×1 is a vector with all

its elements equal to zero, except for the kn-th element that

is equal to one. The respective Minimum MSE (MMSE) for

the estimation of source kn using the measurements from the

nodes in S , is given by

MSE
(OPT)
kn,S

= 1− dT
kn
AT

S

(

ASA
T
S +ΣS

)−1
ASdkn

, (8)

where we have used the assumption that all sources have unit

variance and zero mean. We can now show the following:

Lemma 1. The set υ(S) for the Signal Enhancement Game,

with no communication costs, is comprehensive.

Proof. The set υ(S) is called comprehensive, if it holds that

when p ∈ υ(S) and q ∈ R|S| are such that q ≤ p, then

q ∈ υ(S), [6]. In other words, the players can achieve any

payoff that is smaller or equal to any achievable payoff. It is

easy to verify that the equation

E
[

(xkn
− bT

kn,SyS)
2
]

= C (9)

always has at least one solution with respect to bkn,S , as long

as the constant C ≥ MSE
(OPT)
kn,S

. Thus, it follows that all pay-

offs smaller that the optimal one are achievable.

Based on the above, it is easy to verify that the set of pay-

off vectors is equal to

υ(S) =
{

p ∈ R|S| : ∀n ∈ S, pn(S) ≤ −MSE
(OPT)
kn,S

}

, (10)

where pn(S) denotes the n-th element of the payoff vector p.

From the above relation, it is easy to note that the set υ(S) is

a so-called box, where −∞ < pn ≤ −MSE
(OPT)
kn,S

. We now

proceed with the following:

Lemma 2. The examined Signal Enhancement Game, with

no communication costs, is canonical.

Proof. According to [6], a cooperative game is termed as

canonical if it fulfills two requirements: (a) The value of a

coalition S is determined by the members of S and not, in

any sense, by the players in N \ S , and (b) The game is su-

peradditive, a property that is formally defined as

υ(S1 ∪ S2) ⊇ {p ∈ R|S1∪S2| : (pn)n∈S1
∈ υ(S1),

(pn′)n′∈S2
∈ υ(S2)}

∀S1,S2 ⊂ N s.t. S1 ∩ S1 = ∅ (11)

It is obvious that our examined game, by definition, fulfills

requirement (a). Such games are termed as being in char-

acteristic form. In order to prove that the examined game is

furthermore superadditive, it suffices to show that

∀n ∈ S1,MSE
(OPT)
kn,S1∪S2

≤ MSE
(OPT)
kn,S1

(12)

and

∀n′ ∈ S2,MSE
(OPT)
kn′ ,S1∪S2

≤ MSE
(OPT)
kn′ ,S2

. (13)

Since in the coalition S1 ∪ S2 all nodes utilize an augmented

measurement vector yS1∪S2
and the optimal (in the MMSE

sense) filter is computed using this augmented measurement

vector, then it follows that the above inequalities do hold true.

In other words, in the coalition S1 ∪ S2, the players can al-

ways revert back to their previous behavior but they also have

the opportunity to utilize more information, and thus decrease

their MSE.

Due to the fact that, in a canonical game, cooperation is

never harmful with respect to the non-cooperative case, it

is important to study the properties of the grand coalition,

i.e., the coalition of all nodes. To this end, we will employ

the, probably most studied, solution concept, known as the

core [7]. The core of a canonical game is the set of payoff

vectors for which it holds that no coalition S ⊂ N , S 6= ∅ has

an incentive to split off. In order to solve an NTU game using

the core, the value υ of the game is often assumed to satisfy

the following three requirements, for any coalition S [6]:

1. υ(S) must be a closed and convex subset of R|S|

2. υ(S) must be comprehensive

3. The set {p : p ∈ υ(S) and pn ≥ zn, ∀n ∈ S}, where

zn = max{pn : p ∈ υ({n})} < ∞ ∀n ∈ N , must be a

bounded subset of R|S|.

If a canonical NTU game has a υ that satisfies the above, then

the core of the game can be defined as

CNTU = {p ∈ υ(N ) : ∀S, ∄q ∈ υ(S), s.t. qn > pn, ∀n ∈ S}
(14)

Theorem 1. The examined Signal Enhancement Game, with

no communication costs, has a non-empty core.

Proof. We will first show that the three above requirements

are fulfilled. First, from equation (10), it is easy to verify that

υ(S) is a closed and convex subset of R|S|. Second, the set

υ(S) is comprehensive according to Lemma 1. For the third

requirement, we first note that the maximum utility zn of node

n when not cooperating is zn = −MSE
(OPT)

kn,{n}
. Thus, the sets

involved in requirement 3 will be given by

{

p ∈ R|S| : ∀n ∈ S,−MSE
(OPT)

kn,{n}
≤ pn ≤ −MSE

(OPT)
kn,S

}

(15)

which is a bounded subset (box) of R|S|. Of course, from

Lemma 2, we know that −MSE
(OPT)

kn,{n}
≤ −MSE

(OPT)
kn,S

.

Since all three requirements are satisfied, the definition of

the core in (14) holds. Furthermore, if we consider the payoff

vector po ∈ RN with elements po,n = −MSE
(OPT)
kn,N

, it can

be shown that it lies in the core, and thus, the core is non-

empty.

23rd European Signal Processing Conference (EUSIPCO)

1932



3.2. A Game with Communication costs

We now attempt to study the case in which the nodes of the

network have some communication costs. In particular, we

define an NTU coalitional game (N , υ), where N is the set

of players/nodes and υ(S) ⊆ R|S| is the set of payoff vectors

for a coalition S ⊆ N . If p ∈ υ(S) is a payoff vector, then

the payoff of player n ∈ S is an element of p, given as

pn(S) = −E
[

(xkn
− x̂kn,S)

2
]

− Cn,S , (16)

where Cn,S stands for the total communication costs required

by node n when it is a member of coalition S . We consider

the case in which communication among the nodes of the net-

work is based only on one-hop links. In other words, nodes do

not store and forward packets. The utility in (16) can repre-

sent two separate cases, and in particular (a) the case in which

for any coalition S , each node n ∈ S transmits its measure-

ments to all other nodes in S using |S| − 1 direct (point-to-

point) links (i.e., complete graph) and (b) the case in which

it uses a broadcast message with enough power to reach the

furthest node in S .

3.2.1. Analysis of the Game with Communication Costs

Theorem 2. The examined Signal Enhancement Game, with

communication costs included, has, in general, empty core.

Proof. It is easy to prove that in general the core is empty,

if one considers high communication costs. In fact, we can

force any coalition to split if we increase enough one or more

communication costs.

Since the nodes will not in general form the grand coali-

tion, it is of interest to apply a coalition formation algorithm

and analyze the properties of the coalitional structure being

formed. Toward this goal, our focus is put on the so-called

merge-split approach, initially presented in [9], and applied

in the context of several applications [6], [10]- [13].

4. A COALITION FORMATION ALGORITHM

In order to derive a coalition formation algorithm for the ex-

amined game, we proceed with some definitions. A collec-

tion of coalitions is a set of mutually disjoint coalitions, i.e.,

P = {S1,S2, . . . ,SL}, where Sl ⊂ N for l = 1, 2, . . . , L.

If a collection P covers all the nodes in N , then the collec-

tion P is also a partition of N . The Pareto order operator

⊲ for comparing two collections P = {S1,S2, . . . ,SL} and

Q = {S ′1,S
′
2, . . . ,S

′
L′}, that are partitions of the same set

A ⊆ N , is defined as

P ⊲Q ←→ pn(P) ≥ pn(Q), ∀ n ∈ A (17)

with at least one node satisfying the strict inequality.

We can now define an algorithm for coalition formation

that is based on two simple steps, i.e., merge and split [9],

[10], as follows:

• Merge any collection of coalitions {S1,S2, . . . ,SL} into

a single coalition, if the merged coalition is “greater” in

terms of the Pareto order, i.e. if
⋃L

l=1 Sl⊲{S1,S2, . . . ,SL}

• Split any coalition into a collection of smaller coalitions

{S1,S2, . . . ,SL}, if that collection is “greater” in terms

of the Pareto order, i.e., if {S1,S2, . . . ,SL} ⊲
⋃L

l=1 Sl.

Note that coalitions will merge (or split) only if there is

at least one node that is improving its payoff while there is

no decrease in the payoffs of the other nodes of the coalitions

involved in the merge (or split) operation. The algorithm ter-

minates for any initialization, and the coalition structure al-

ways converges to a Dhp−stable coalition structure [9], i.e.,

no group of nodes has an incentive to perform a merge or a

split operation. The merge-split protocol can be practically

implemented in several different ways, with respective trade-

offs between the required complexity and the payoffs of the

achieved solution. A possible implementation that was fol-

lowed in our experiments is described in next section.

To cope with possible node mobility, time varying mixing

matrix and/or noise variances, the coalition formation process

may be repeated periodically during the network operation.

5. SIMULATION RESULTS

In this section, we aim to verify the theoretical discussion and

the effectiveness of the merge-split algorithm in the frame-

work of an acoustics illustrative example. We assume K = 3
sound sources, and N = 7 nodes where each of them is in-

terested in a single source. For simplicity, it is assumed that

each node possesses a single microphone, i.e., Mn = 1, for

n ∈ {1, . . . , 7}. The network has been randomly generated

to lie withing the unit square (see Fig. 2). In other words,

the coordinates of both nodes and sound sources are drawn

from a uniform distribution over the unit square. Each source

influences all nodes, and this is modeled using a distance-

based mixing matrix. Specifically, the (n, k)-th element of

matrix A is defined as an,k = 1/(dn,k/d0)
2, where d0 =

0.2 is a reference distance, with dn,k being the distance be-

tween a node n and a source k. Furthermore, we assume that

each node is interested in the source that is the closest to it,

while the noise variance of each node is chosen from the inter-

val (0.01, 0.36). The communication cost between the nodes

n and n′ is modeled with a simple exponential model, i.e.,

Cn,n′ = β · e(dn,n′/d0), where dn,n′ denotes now the distance

between the nodes n and n′, while β is a normalization co-

efficient. Assuming broadcast communication, the total com-

munication cost for a node n in order to establish a coalition

S is given by Cn,S = maxn′∈S\{n} {Cn,n′}.
The merge-split protocol is practically implemented as

follows. Firstly, any coalition Ti from an initial network parti-

tion T starts the merging process by performing pairwise ne-

gotiations with other coalitions. In case that a merge occurs,

the newly formed coalition continues the search for merging
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Fig. 2. Snapshot of the coalitional structure (dot lines) using

the merge-split algorithm, for β = 0.001 with 7 nodes (cir-

cles) and 3 audio sources (stars) deployed in the unit square.
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Fig. 3. Maximum and average coalition size as a function of

the communication cost.

until it is possible. Next, the merging process is repeated for

all remaining coalitions from T that have not been merged

yet. In the second step, the resulting coalition(s) are perform-

ing split operations, if any is possible.

Figure 2 shows a coalitional structure snapshot resulting

from the merge-split protocol, for a single network realiza-

tion, for the normalization coefficient β being fixed to 0.001.

The stars represent the sources while the nodes are depicted

as circles. The color of the nodes indicates the source of their

interest, and the dotted lines/ellipses illustrate the coalitions

being formed in this scenario.

Next, Figure 3 shows the sizes of coalitions resulting from

the merge-split protocol as the normalization coefficient of

the communication cost is increased. In particular, the max-

imum and the average sizes of the coalitions being formed

are plotted. The results have been averaged over 100 ran-

dom network realizations. The figure shows that for zero and

relatively small communication costs, the coalition structures

corresponds to the grand coalition, i.e., all nodes are exchang-

ing information among themselves. On the other hand, as the

communication costs get increased, the coalitions break off,

and finally, they reduce to the non-cooperative nodes.

6. CONCLUSION

In this work, we examined a distributed signal enhancement

scenario in a coalitional game theoretic framework. In partic-

ular, our objective was to study when it is beneficial for the

nodes to take part into coalitions that help them decrease their

MSE. In the case of zero communication costs, it was shown

that the coalition of all the nodes is formed. When commu-

nication cost is non negligible, a merge-split algorithm can

be employed to construct stable coalitions. Numerical results

were provided that support the theoretical findings.
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