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ABSTRACT

In this paper we evaluate the scattering transform as an al-
ternative signal representation to the mel-spectrogram in the
context of unsupervised feature learning for urban sound clas-
sification. We show that we can obtain comparable (or better)
performance using the scattering transform whilst reducing
both the amount of training data required for feature learning
and the size of the learned codebook by an order of magni-
tude. In both cases the improvement is attributed to the lo-
cal phase invariance of the representation. We also observe
improved classification of sources in the background of the
auditory scene, a result that provides further support for the
importance of temporal modulation in sound segregation.

Index Terms— Unsupervised learning, scattering trans-
form, acoustic event classification, urban, machine learning

1. INTRODUCTION

Audio classification systems have traditionally relied on hand
crafted features, a popular choice being the Mel-Frequency
Cepstral Coefficients (MFCCs) [1]. Examples of systems that
rely on manually engineered features in the domain of en-
vironmental sound source classification include [2–4]. Re-
cent studies in audio classification have shown that accuracy
can be improved by using unsupervised feature learning tech-
niques as an alternative to manually designed features, with
examples in the areas of bioacoustics [5], music information
retrieval [6–8] and environmental sound classification [9–11].

Still, the raw audio signal is not suitable as direct input to
a classifier due to its extremely high dimensionality and the
fact that it would be unlikely for perceptually similar sounds
to be neighbours in vector space [5]. As a consequence,
even systems that use feature learning need to first transform
the signal into a representation that lends itself to successful
learning. For audio signals, a popular representation is the
mel-spectrogram [5, 6, 11].

In [11], we studied the application of unsupervised fea-
ture learning from mel-spectrograms for urban sound source
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classification. We showed that the learned features can out-
perform MFCCs due to their ability to capture the short-term
temporal dynamics of the sound sources – a particularly im-
portant trait when dealing with sounds such as idling engines
or jackhammers whose instantaneous noise-like character-
istics can be hard to distinguish otherwise. To achieve the
learning of temporal dynamics we applied frame shingling,
i.e. the features were learned from groups of several consec-
utive frames (2D time-frequency patches). Whilst we were
able to improve classification accuracy in this way, we noted
that the downside to the approach was that we had to learn
a separate codeword (feature) to encode every phase-shift
within a 2D patch, which consequently required learning a
larger codebook (set of features) overall.

Over the years we have seen the advent of alternative sig-
nal representations (i.e. transforms) for audio classification,
and in particular representations that encode amplitude mod-
ulation over time such as the modulation spectrogram [12,13]
and more recently the scattering transform [14–16]. The latter
in particular, also referred to as the deep scattering spectrum,
has been shown to be stable to time-warping deformations
and capable of characterizing time-varying structure over (rel-
atively) long window sizes compared to those used for com-
puting MFCCs for instance. This suggests that the scattering
transform could characterize the short-term temporal dynam-
ics captured by 2D mel-spectrogram patches with the added
advantage of being phase invariant. From the sound percep-
tion and cognition literature we know that modulation plays
an important role in sound segregation and the formation of
auditory images [17–19], which further motivates the explo-
ration of representations such as the scattering transform for
machine listening. It has already been shown to be a useful
representation for environmental sound classification in [20],
although no feature learning was applied in that study.

In this paper we study the use of the scattering transform
in combination with the feature learning and classification
pipeline proposed in [11] for the classification of urban sound
sources. In Section 2 we describe the signal representations
compared in this study. The feature learning and classification
algorithms we use are described in Section 3, and our dataset
and experimental design in Section 4. Results are discussed
in Section 5 and a summary is provided in Section 6.
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2. SIGNAL REPRESENTATIONS

2.1. Mel Spectrogram

The mel-spectrogram is obtained by taking the short-time
Fourier transform and mapping its spectral magnitudes onto
the perceptually motivated mel-scale [21] using a filterbank
in the frequency domain. It is the starting point for comput-
ing MFCCs [1], and a popular representation for many audio
analysis algorithms including ones based on unsupervised
feature learning [5–7, 11]. As in [11], we compute log-scaled
mel-spectrograms with 40 bands between 0-22050 Hz using a
23 ms long Hann window (1024 samples at a sampling rate of
44.1 kHz) and a hop size of equal length. The representation
is computed using the Essentia library [22] which provides
Python bindings to a C++ implementation.

In a feature learning framework (cf. Section 3), we can
choose to learn features from individual frames of the mel-
spectrogram or alternatively group the frames into 2D patches
(by concatenating them into a single longer vector) and apply
the learning algorithm to the patches. In [11] we showed that
the latter approach facilitates the learning of features that cap-
ture short-term temporal dynamics, outperforming MFCCs
for classification. Following this result, we group consecutive
frames to form 2D patches with a time duration of roughly
370 ms. Given our analysis parameters this corresponds to
grouping every 16 consecutive frames.

2.2. Scattering Transform

As noted in the introduction, grouping mel-spectrogram
frames captures temporal structure at the cost of having to
learn a larger number of features to cover all possible phase
shifts of a sound pattern within a 2D patch. An alternative
solution would be to use a transform that can characterize am-
plitude modulations in a phase-invariant way: the scattering
transform [16].

The scattering transform can be viewed as an extension
of the mel-spectrogram that computes modulation spectrum
coefficients of multiple orders through cascades of wavelet
convolutions and modulus operators. Given a signal x, the
first order (or “layer”) scattering coefficients are computed by
convolving x with a wavelet filterbank ψλ1

, taking the mod-
ulus, and averaging the result in time by convolving it with a
low-pass filter φ(t) of size T :

S1x(t, λ1) = |x ∗ ψλ1
| ∗ φ(t). (1)

The wavelet filterbank ψλ1 has an octave frequency resolu-
tion Q1. By setting Q1 = 8 the filterbank has the same fre-
quency resolution as the mel filterbank, and this layer is ap-
proximately equivalent to the mel-spectrogram. The second
order coefficients capture the high-frequency amplitude mod-
ulations occurring at each frequency band of the first layer
and are obtained by:

S2x(t, λ1, λ2) = ||x ∗ ψλ1
| ∗ ψλ2

| ∗ φ(t). (2)

The octave resolution of the second order filterbank is deter-
mined by Q2. Following [16] we set Q2 = 1. Higher order
coefficients can be obtained by iterating over this process, but
it has been shown that for the value of T used in this study (see
below) most of the signal energy is captured by the first and
second order coefficients [16]. Furthermore, adding higher-
order coefficients would blow-up the dimensionality of the
representation. Consequently, in this study we use the first
and second orders for our scattering representation.

It is beyond the scope of this paper to describe the scat-
tering transform in greater detail, and we refer the interested
reader to [14–16] for further information. It will suffice to
note that the important parameters of the transform relevant to
our experiments are the filterbank resolutions Q1 and Q2 and
the duration T of the averaging filter which also represents
the duration of the modulation structure we hope to capture
using the second order coefficients. As noted above, we fix
Q1 = 8 andQ2 = 1. The filterbank is constructed of 1D Mor-
let wavelets. We set T to the same duration covered by the 2D
mel-spectrogram patches, i.e. 370 ms (for a sampling rate of
44.1 kHz this implies T = 1024× 16). To compute the scat-
tering transform we use the ScatNet v0.2 Matlab software1.
By default ScatNet computes the scattering coefficients with-
out any oversampling, meaning the time-difference between
consecutive frames is T/2. ScatNet provides an oversampling
parameter that allows us to obtain a finer temporal represen-
tation of the transform. By modifying this parameter we can
emulate different hop sizes ranging from T/2 down to the
hop size we use for the mel-spectrograms (T/16). Impor-
tantly, note that the hop size is in inverse relationship to the
number of analysis frames and consequently to the amount of
data used for unsupervised feature learning. For each frame
we concatenate the first order coefficients with all of the sec-
ond order coefficients into a single feature vector. The second
order coefficients are normalized using the previous order co-
efficients as described in [16]. Note that we also experimented
with using the second order coefficients only, but this option
resulted in significantly lower classification accuracies and is
hence not explored further in this study.

3. FEATURE LEARNING & CLASSIFICATION

3.1. Feature learning with spherical k-means

Given our representation (log-mel-spectrogram patches or
scattering transform frames), we learn a codebook of repre-
sentative codewords from the training data. The samples in
the dataset are then encoded against this codebook and the
resulting code vectors are used as feature vectors for training
/ testing a classifier. To learn the codebook we use the spher-
ical k-means algorithm [23]. Unlike the traditional k-means
clustering algorithm [24], the centroids are constrained to
have unit L2 norm (they must lie on the unit sphere), the

1http://www.di.ens.fr/data/software/scatnet/
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benefits of which are discussed in [23, 25]. The algorithm
has been shown to be competitive with more complex (yet
considerably slower) techniques such as sparse coding, and
has been used successfully to learn features from audio for
music [6], birdsong [5] and urban sound classification [11].
As a feature learning technique, we use the algorithm to learn
an over-complete codebook, so k is typically much larger
than the dimensionality of the input data. For further details
about the algorithm the reader is referred to [23].

Before passing the log-mel-spectrogram patches or scat-
tering transform frames to the clustering algorithm we first re-
duce the dimensionality of the input data by decorrelating the
input dimensions using PCA whitening. This has been shown
to significantly improve the discriminant power of the learned
features [23]. Following the procedure proposed in [6], we
apply PCA whitening and keep enough components to ex-
plain 99% of the variance. Empirically, this reduces the di-
mensionality of a mel-spectrogram patch from 640 to 250,
and of a scattering frame from 427 to 230. The clustering
produces a codebook matrix with k columns, where each col-
umn represents a codeword. Every sample in our dataset is
encoded against the codebook by taking the scalar product
between each of its frames (or patches) and the codebook ma-
trix. This approach was shown to work better than e.g. vector
quantization [8] for the dataset studied in this paper [11]. Fi-
nally, we have to summarize the per-frame (or per-patch) val-
ues produced by the encoding over the time axis to ensure that
all samples in the dataset are represented by a feature vector
of the same dimensionality. Following [11] we summarize
the encoded values over time with two statistics: the mean
and standard deviation. The resulting feature vectors are thus
all of size 2k, and we standardize them across samples before
passing them on to the classifier.

3.2. Classification

For each representation we experimented with two different
classification algorithms: a random forest classifier [26] with
500 trees and a support vector machine [27] with a radial ba-
sis function kernel. In this way we can select the classifier
that is best suited for each representation and focus on com-
paring the best results obtained by the two representations.
Based on these experiments, we use the random forest clas-
sifier for the mel-spectrograms and the support vector ma-
chine for the scattering transform. For both classifiers we
use the implementation provided in the scikit-learn Python
library [28] with their default hyper-parameter values.

4. EXPERIMENTAL DESIGN

We use the UrbanSound8K [29] dataset for our experiments.
It contains 8732 audio samples of up to 4 seconds in duration
taken from real field recordings. The samples include sounds
from 10 classes: air conditioner, car horn, children playing,

dog bark, drilling, engine idling, gun shot, jackhammer, siren
and street music; and come divided into 10 stratified subsets
for unbiased cross-validation. Since the samples come from
field recordings, there are often other sources present in addi-
tion to the labeled source. For each sample the dataset indi-
cates whether the labeled source is in the foreground or back-
ground (as subjectively perceived by the dataset annotators).

Each experiment is run using 10-fold cross validation
based on the stratified subsets. We compute the classification
accuracy for each fold and present the results as a box plot.

5. EXPERIMENTS & RESULTS

5.1. Experiment 1: Mel-spectrogram versus Scattering

In our first experiment, we compare the classification accu-
racy obtained when using the mel-spectrogram as input ver-
sus the scattering transform, varying the size k of the code-
book from 200 to 2000. For this experiment we over-sample
the scattering transform such that it contains the same num-
ber of analysis frames as the mel-spectrogram. In this way
both representations produce the same amount of training data
(frames) for the feature learning algorithm.

The results are presented in Figure 1. As reference, note
that a baseline system using MFCCs with a random forest
(and no learning) obtained a mean accuracy of 0.69 for the
same dataset [11]. The first thing we see is that the scattering
transform produces comparable results to the shingled mel-
spectrogram (it actually outperforms the mel-spectrogram in
the best case, but the difference is not statistically significant).
Both outperform the MFCC baseline (statistically significant
according to a paired t-test with p < 0.05). Whilst we had to
group frames into 2D patches to capture the temporal struc-
ture of sounds with mel-spectrograms, we see that this infor-
mation is captured by a single frame of the scattering trans-
form (with first and second order coefficients), as one might
expect. The more remarkable result is that whilst the perfor-
mance using the mel-spectrogram increases as we increase k,
using the scattering transform we actually get better perfor-
mance with smaller values of k (the best being k = 500).
This can be explained by the local phase invariance of the
latter: when using mel-spectrogram patches we need to learn
features to encode every phase-shift of a sound within a patch,
whereas a scattering transform frame is invariant to this shift.
This means we can obtain the same classification accuracy
whilst reducing the size of the codebook by an order of mag-
nitude. This could have a significant influence on the compu-
tational cost of the approach as we scale the problem to larger
datasets with more classes and more training samples. Note
that in practice computing the scattering transform will take
longer than computing the mel-spectrogram by a multiplica-
tive factor proportionate to the dimensionality of the scatter-
ing output, so the effective gain in efficiency will depend on
the specific parameterization used.
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k=200 

k=500 

k=1000 

k=2000 

Fig. 1. Classification accuracy results: mel-spectrogram with
feature learning vs. scattering transform with feature learning.
The codebook size k is varied from 200 to 2000.

5.2. Experiment 2: Scattering Oversampling

In our first experiment we oversampled the scattering trans-
form so that the number of analysis frames equaled the num-
ber of frames in the mel-spectrogram. In our second experi-
ment, we compute the scattering transform with different de-
grees of oversampling: from 43 frames per second (equiv-
alent to the analysis hop size of the mel-spectrogram of 23
ms) down to the critical sampling rate of the transform coeffi-
cients of 5.5 frames per second (a hop size of 185 ms). This in
turn affects the total number of training frames produced for
the feature learning stage: from approximately 1.2M down to
150K. Based on the results of the previous experiment, we fix
k = 500.

In Figure 2 we present the classification accuracy obtained
as a function of the size of the data used for unsupervised fea-
ture learning. The results are somewhat surprising – rather
than observing a decrease in performance as we decrease the
size of data, the results remain stable. As with the previ-
ous experiment, this is likely due to the local phase invari-
ance of the scattering transform: there is no need to represent
every phase shift of a 2D patch in the training data since a
single scattering frame represents all possible shifts simulta-
neously. Together with the findings of the previous experi-
ment, the results are highly encouraging – by replacing the
mel-spectrogram with the scattering transform we are able to
reduce both the amount of training data and the size of the
learned codebook by an order of magnitude whilst maintain-
ing (or even improving) the classification accuracy.

5.3. Experiment 3: Foreground versus Background

Finally, recall that each sample in the dataset is also labeled
as being in the foreground or background. In Figure 3 we
plot the best classification accuracy for the mel-spectrogram
and the scattering transform alongside a breakdown into fore-
ground accuracy and background accuracy. Whilst for the
foreground sounds the representations produce very similar
results (mean accuracies of 0.814 and 0.817 respectively), we
observe a considerable improvement for background sounds

1.2M 600K 300K 150K
0.60
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0.70

0.75

0.80
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cc
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Fig. 2. Classification accuracy for the scattering transform
(with k = 500) as a function of the training data size.

Background 

All samples 

Foreground 

Fig. 3. Best classification accuracy obtained using the mel-
spectrum and scattering transform with a breakdown into
foreground and background.

using the scattering transform: 0.557 vs. 0.604. Though fur-
ther investigation would be required to make any hard claims,
our results align nicely with those of the sound perception and
cognition literature [17–19], suggesting that the scattering
transform representation better facilitates the (machine) seg-
regation of sound sources due to its characterisation of mod-
ulation, in particular when the source of interest is masked by
other sounds.

6. SUMMARY

In this paper we evaluated the use of the scattering transform
as an alternative to the mel-spectrogram in the context of un-
supervised feature learning for environmental sound classifi-
cation. We showed that we can obtain comparable (or slightly
better) performance using the scattering transform whilst re-
ducing both the amount of training data required for feature
learning and the size of the learned codebook by an order of
magnitude. In both cases the improvement is attributed to the
local phase invariance of the representation. We also noted
that the observed increase in performance was primarily due
to the improved classification of sources in the background
of the auditory scene, a result which aligns with the evidence
found in the sound perception and cognition literature about
the importance of temporal modulation for sound segregation.
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