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ABSTRACT

These last years, artificial neural networks (ANN) have

known a renewed interest since efficient training procedures

have emerged to learn the so called deep neural networks

(DNN), i.e. ANN with at least two hidden layers. In the same

time, the computational auditory scene recognition (CASR)

problem which consists in estimating the environment around

a device from the received audio signal has been investigated.

Most of works which deal with the CASR problem have tried

to find well-adapted features for this problem. However,

these features are generally combined with a classical classi-

fier. In this paper, we introduce DNN in the CASR field and

we show that such networks can provide promising results

and perform better than standard classifiers when the same

features are used.

Index Terms— Deep neural networks; deep belief net-

works; audio scene recognition.

1. INTRODUCTION

1.1. Generalities

The CASR problem consists in determining automatically the

context or environment around a device [1]. A variety of

features have been proposed for CASR, but the majority of

the past work uses features that are well-known for struc-

tured data, such as speech and music. In this way, time-

domain (zero-crossing rate), frequency-domain (band-energy

ration, spectral centroid, spectral flatness) and cepstral (Mel-

frequency cepstral coefficients) features are naturally used in

the literature [1] [2] [3] [4]. Only few recent articles have pro-

posed new sets of features which try to encode some relevant

information for unstructured environmental sound classifica-

tion. The choice of these new features is often inspired by

other research fields than audio one such as image process-

ing (spectrogram pattern [5], histogram of gradient (HOG)

features [6]), chaos theory (Recurrence Quantification Analy-

sis descriptors [7]) or compressed sensing (Matching Pursuit-

based features [8]). In this paper, we do not discuss on the

relevance of audio features for CASR but we investigate clas-

sification approaches. Indeed, whatever the complexity of the

features proposed in the literature, the classification step is

always based on standard machine learning approaches such

as K-nearest neighbors [1] [5] [8], Gaussian Mixture Mod-

els (GMM) [1] [8], hidden Markov models [2] [3], Support

Vector Machines (SVM) [4] [6] [7]. Or, while DNN have led

to significant advances in automatic speech recognition [9],

this approach has never been used in the field of CASR to

the best of our knowledge. In this paper, we study how to

deploy DNN for audio context recognition and we show that

DNN can produce promising results even when we use stan-

dard audio features which are not necessarily optimized for

the CASR problem.

1.2. Feed forward artificial neural networks

Feed forward artifical neural networks (ANN) are popular

computer architectures which can be used for classification.

More precisely, when the objective is to classify a feature of

interest x among C classes, an ANN estimates the probabili-

ties pj , j ∈ {1, · · · , C}, of each class given the input feature

x. In our audio classification problem, the input x represents

the concatenation of audio features [10] [11], such as cepstral

(Mel-frequency cepstral coefficients (MFCC)) and frequency

features (spectral centroid, spectral flatness,...); the class rep-

resents the audio context (car, bus, office, street, restaurant,

...). A graphical representation of this architecture is given in

Figure 1.
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Fig. 1. An ANN is described by an input (a feature vector), a

given number of hidden layers, a given number of neurons per

layer and an output which describes the class probabilities.

In order to compute the outputs pj of the ANN, we first
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need to compute the ouput of each hidden unit. In an ANN,

the connection between the k−1-th hidden layer and the k-th

one is described by a matrix of weights Wk, and a bias vector

bk; the output hk
j of the j-th neuron of the k-th layer is then

computed from

hk
j = f

(

∑

i

wk
ijh

k−1
i + bkj

)

, (1)

where f(.) is the sigmoid function:

f(x) = sigmoid(x) =
1

1 + e−x
. (2)

Finally, the output is computed via the softmax nonlinearity,

pj =
e
∑

i=1
w

p

ij
h
p−1

i
+b

p

j

∑

k e
∑

i=1
w

p

ik
h
p−1

i
+b

p

k

, (3)

where p is the number of layers (without counting up the input

layer).

The training of ANN (i.e. the estimation of parameters

Wk and bk) relies on supervised methods such as the Back-

Propagation (BP) algorithm [12] whose the principle will be

reminded in section 3. However, when the number of hid-

den layers and neurons increases, supervised methods are not

reliable and ANN are difficult to tune. Particularly, these

methods can be stuck in a poor local optima when we look

for estimating the parameters. Recently, new procedures for

training DNN (i.e. ANN with at least two hidden layers)

have been proposed to overcome the limitations of classi-

cal training algorithms [13] and rely on an unsupervised pre-

training which aims at initializing properly the parameters of

the DNN. The rest of this paper is organized as follows. In

Section 2, we describe the pre-training step of DNN which

relies on Restricted Boltzman Machines (RBM) and Deep Be-

lief Networks (DBN) and which are both probabilistic graphi-

cal models. In Section 3, the principle of the supervised train-

ing via the BP algorithm is recalled. Finally, in section 4, we

focus on the tuning of DNN for CASR problem by perform-

ing experimentations on an audio context dataset.

2. PRE-TRAINING OF DNN VIA DBN

We now focus on the initialization of the parameters of DNN

by considering DBN which are generative graphical model.

Thus, the initialization of the parameter of a DNN relies on

those of the associated DBN. However, maximizing the likeli-

hood of a DBN is impossible. Consequently variational meth-

ods based on RBM models have been developed and con-

sists in training separately each layer of the DBN as an RBM.

These models are described in our next paragraph.

2.1. RBM

An RBM is a probabilistic graphical model which connects a

set of m visible random variables (r.v.), v = (v1, · · · , vm),

with a set of q hidden r.v., h = (h1, · · · , hq) [14]. In this

model, the joint probability density function (pdf) of the visi-

ble and hidden units depends on an energy function and reads

p(v,h) =
1

Z
e−E(v,h), (4)

where

E(v,h) = −
∑

i

aivi −
∑

j

bjhj −
∑

i,j

wijvihj , (5)

Z =
∑

v,h

e−E(v,h) (6)

for a Bernoulli-Bernoulli RBM (BBRBM) (i.e. an RBM in

which vi and hj take their values in {0, 1}). Equations related

to a Gaussian-Bernoulli RBM (GBRBM) and which are more

adapted for real values can be found in [9].

From an unlabeled visible dataset (x1, · · · ,xN ), our ob-

jective is to learn the parameters of the RBM. More precisely,

starting from (4)-(6), we intend to maximize the likelihood

p(x1, · · · ,xN ) =
∏N

i=1 p(x
i), where

p(xi) =
∑

h

p(xi,h) =
1

Z

∑

h

e−E(xi,h), (7)

w.r.t. ai, bj and wij .

However, the gradient of the log-likelihood,

1

N

N
∑

k=1

∂ log p(xk)

∂wij

=
1

N

N
∑

k=1

∑

hj

p(hj |x
k)xk

i hj−

∑

vi,hj

vihjp(vi, hj), (8)

is not computable but can be interpreted as the sum of two

expectations. Consequently, (8) can be approximated by a

Monte Carlo method. More precisely, in an RBM (4), one

can show that

p(hj = 1|v) = sigmoid(bj +
∑

i

wijvi), (9)

where the sigmoid function sigmoid(.) is defined in (2) and

that

p(vi = 1|h) = sigmoid(ai +
∑

j

wijhj). (10)

Finally, the first expectation in (8) is easy to approxi-

mate by sampling according to p(vi|h); sampling accord-

ing to p(vi, hj) is more difficult but can be achieved via

a Gibbs sampler in which we sample alternatively from

p(v|h) =
∏m

i=1 p(vi|h) and p(h|v) =
∏q

i=j p(hj |v). In

practice, the expectations are approximated with only 1
sample and the Gibbs sampler relies on 1 iteration. This

procedure is called the Contrastive Divergence (CD-1) algo-

rithm and leads to an approximate maximization of (8) via a

gradient descent method.
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2.2. Deep Belief Networks

Let us now consider the DBN probabilistic model defined

by a layer of visible unit x = h0 (our input data) and

p − 1 hidden layers, denoted h1, · · · ,hp−1. The pdf of

(h0,h1, · · · ,hp−1) in a DBN reads

p(h0,h1, · · · ,hp) =

p−2
∏

i=1

p(hi−1|hi)p(hp−2,hp−1), (11)

where p(hp−2,hp−1) is an RBM and coincides with (4), and

p(hi−1|hi) is deduced from (10).

Again, the maximization of the likelihood p(x) in model

(11) w.r.t parameters Wk and bk associated to each layer hk

is not possible. A greedy layer wise procedure has been pro-

posed in the literature [13] [15] [16] and consists in approxi-

mating the DBN (11) as a stacking of RBM (4).

Strictly speaking, p(hk−1,hk) in (11) does not satisfy (4)

and so is not an RBM, except for k = p− 1. However, justi-

fications of the following procedure can be found in [16] [13]

and relies on Kullback Leibler Divergence arguments.

In summary, the unsupervised training of a DBN (i.e.

the pre-training of our DNN) consists of the following steps;

starting from a training dataset {x1, · · · , xi, · · · ,xN} :

1. train the first RBM (h0,h1) (i.e. compute W1 and b1

associated to the first layer) via the procedure described

in section 2.1;

2. compute the output associated to the data set {x1, · · · ,xi,

· · · ,xN} via (1)-(2) using the parameters W1 and b1 ob-

tained after the pre-training;

3. train the next RBM (h1,h2), · · · , (hp−2,hp−1) by re-

peating steps 1. and 2.

3. FINE-TRAINING OF DNN

We now consider that the parameters estimated by the pre-

training algorithm are used for the initialization of the super-

vised training algorithm of the DNN. So now we assume that

we have a set of labeled data

E = {(x1,d1), · · · , (xi,di), · · · , (xN ,dN )} (12)

where di = [di1, · · · , d
i
K ]T is the known class vector asso-

ciated to xi and K the number of classes: dij=C = 1 if xi

belongs to the C-th class and dij 6=C = 0 otherwise. Note that

this set could be different from the one used in the previous

section for the learning of the associated DBN.

Supervised training consists in tuning matrices Wk and

biases bk from the set E in (12). Here, our objective is to min-

imize the cross entropy C = −
∑K

k=1 dk log(pk) between the

output of the DNN p = [p1, · · · , pK ]T and the target prob-

abilities d = [d1, · · · , dK ]T . The BP method is a popular

algorithm to compute recursively the gradient of C w.r.t. the

weights wk
ij and the biases bkj of the DNN [12]. Finally, the

algorithm includes a gradient descent method in order to ap-

proximate the parameters which minimize C.

In summary, from a given labeled data (x,d) and for a

given iteration l:

1. Compute the output p associated to the input x by using

weights wk
ij(l − 1) and biases bkj (l − 1) of the previous

iteration l− 1. Remember that wk
ij(0) and bkj (0) coincide

with the parameters estimated by the pre-training step;

2. Backpropagate the gradient of the error C in the DNN, i.e.

compute the gradient ∆wk
ij(l) and ∆bkj (l) of C w.r.t the

weights and the biases of the DNN.

3. Update the weights wk
ij(l) = wk

ij(l − 1)− ǫ∆wk
ij(l), and

the biases bkj (l) = bkj (l − 1) − ǫ∆bkj (l), where ǫ is the

learning rate;

Many refinements have been proposed in order to improve

the computation of the weights and the biases from the train-

ing set E in (12). These refinements rely on a random mini-

batch to compute the gradient of the error and the momentum

method to improve the speed of learning [17].

4. SIMULATIONS

4.1. Dataset

We present the results for audio context classification that

we have obtained with DNN. The dataset that we use in this

section is the publicly available audio scene dataset acquired

by the LITIS Rouen [18]. The dataset is composed of 3026
recordings whose duration is 30 seconds in such a way that

about 1500 minutes of audio scene have been recorded. The

data are scattered in 19 classes : plane, bus, busy street,

cafe, car, student hall, train station hall, kid game hall, mar-

ket, metro-paris, metro-rouen, billard pool hall, quiet street,

restaurant, pedestrian street, shop, train, high-speed train and

tubestation. More details on the dataset can be found in [6].

Our experimentations are based on a standard feature set

which consists in computing 12 MFCC, its first order deriva-

tives (∆MFCC) and 6 subband spectral flatness coefficients

[19] for every 15ms-spaced frames of length 30ms.

To evaluate our system, we have followed the protocol

proposed in [6] i.e. 80% of the examples were used for train-

ing while the remaining recordings were kept for testing (and

results were averaged over 20 different splits of the dataset).

As an evaluation criterion, we have considered the recogni-

tion rate. Since the classes are not represented by the same

number of recordings, the recognition rate reads

Rec Rate =
1

C

C
∑

i=1

TP(i)

Card(C(i))
,

where C = 19, TP(i) is the number of examples of class i

correctly classified and Card(C(i)) the number of examples

in class i. The final decision for a recording is taken by first
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averaging the output of the DNN for each input frame which

forms the recording and next choosing the class with the best

result.

On one hand, our simulations aim at studying the perfor-

mances of DNN for CASR in function of the number of hid-

den layers and the number of neurons for a given layer. On

the other hand, we also study the effect of the number of the

concatened frames of 30ms (1, 5, 10...) at the input of the

DNN.

Finally, to be sure that our experiments are reproducible

by others, we mention the specific parameters we have used

for the learning procedures. The number of epochs for the

pre-training and the fine-training is 100 and 300 respectively;

the learning set is set to 1 for the pre-training and 0.1 for the

supervised training; a batch size of 100 is used for both train-

ing procedure; the momentum is set to 0.5 for the first five

epochs of both training and next to 0.9. Finally, a weight cost

is set to 0.2× 10−5, for the pre-training. An interpretation of

these parameters can be found in [17].

4.1.1. Influence of the size of the DNN

In this paragraph, we consider a fixed number of 15 input

frames (so the size of the input layer of our DNN is 15×30 =
450) and we compare the performances in function of the

number of hidden layers and the number of neurons for each

hidden layer. For simplicity, we have considered the same

number of neurons for each hidden layer. In figure 2 we have

displayed the recognition rate in function of these parameters.

Overall, DNN perform better when the number of hidden lay-

ers and neurons is greater but it can be seen that when the

number of neurons is weak, increasing the number of hidden

layers does not necessarily improve the performances. The

worse recognition rate (80%) is obtained for 2 hidden layers

of 50 neurons and the best performances (91.6%) are obtained

with 5 hidden layers of 500 neurons. For reasons of space, we

have not reproduced the confusion matrix associated to this

configuration. Roughly speaking, all classes have a recog-

nition rate greater than 80%, except the quiet street and the

pedestrian street which have a recognition rate of 66.66% and

75%, respectively. Theses classes are mainly confused with

the shop and market classes. For larger DNN, we have not ob-

served a major improvement. Indeed, for a DNN with 7 hid-

den layers and 1000 neurons, the recognition rate is 92.2%.

4.1.2. Influence of the input of the DNN

We now set the number of hidden layers to 3 and the num-

ber of neurons to 50 and we perform a simulation in function

of the number of input frames. Increasing the number of in-

put frames has the advantage to reduce the computational cost

when we need to do many classifications. From a computa-

tional cost point of view, it is clear that it is preferable to use

30 × 15 = 450 coefficients at the input of the DNN rather
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Fig. 2. Performances of DNNs for audio classification scene

in function of the size of the DNN. Here, the number of input

frames is 15.
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Fig. 3. Error rate in terms of recordings for the validation set

in function of the number of input frames. The DNN has 3
hidden layers of 50 neurons.

than doing 15 classifications with 30 coefficients. However,

when the final decision is taken after several classifications,

the mean error rate per recording is optimal for 10-15 frames

as we see in Fig. 3.

We have also computed a classifier based on Gaussian

Mixture models (GMM). We have trained 4 mixtures for each

class via the Expectation Maximization (EM) algorithm. The

best recognition rate for this classification method is 80.91%
and is obtained by considering one input frame. It seems that

the concatenation of frames is only interesting for architec-

tures like DNN because they permit to encode the temporal

connections between the frames. This observation is also con-

firmed by the fact that DNN present similar results if we do

not consider the ∆MFCC which describe such connections.

Finally, we have also computed a SVM classifier with a Gaus-

sian Kernel and 15 concatenated input frames. The recogni-

tion rate is 86.5 %.
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5. CONCLUSION

We have proposed a DNN-based approach for the CASR

problem. The rationale of the training algorithms associated

to DNN has been recalled and the performances of these

architectures have been studied in function of their size and

of the number of concatenated input frames, which define

the input layer of the DNN. DNN have been compared with

more classical classifiers such as GMM and SVM, with the

same features: the optimal recognition rates obtained are

92%, 81% and 86.5%, respectively. The relevance of the

features used in our simulations have not been discussed, but

we underline that DNN applied to standard features give sim-

ilar results as well-defined features (HOG) classified by an

SVM approach [6] following the same protocol on the same

dataset (best performance is 92% in both cases). In this way,

several solutions could be exploited in order to improve the

performances of DNN in this context. First, more adapted

features (HOG features for example) could be used at the

input of the DNN. Alternatively, we could also let the DNN

extract automatically the relevant features by using directly

the spectrum as input.
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