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ABSTRACT

In this paper, we propose an image prior based on morpholog-
ical image features for image recovery. The proposed prior is
obtained as the sum of morphological gradient and its higher-
order extensions. The morphological gradient is defined as
the difference between dilation and erosion of an image and
obtains a discretized modulus of gradient. In order to suppress
artifacts appear in the recovered image, we introduce higher-
order morphological gradients. The regularization problem
with the proposed prior is reduced to a constrained minimiza-
tion problem. In order to apply the subgradient method to this
problem, we derive the subgradient of the proposed priors.
We apply the proposed prior to image denoising and demon-
strate that the proposed higher-order morphological gradient
prior is capable to suppress staircase artifacts. Comparison
with the total variation image prior is also demonstrated.

Index Terms— Image recovery, mathematical morphol-
ogy, morphological gradient, image prior, regularization

1. INTRODUCTION

Image recovery is a problem that estimates the original im-
age from the degraded observation. Since the inverse prob-
lem of the image recovery is usually ill-posed, the problem is
treated as the regularization problem. In the regularization of
the image recovery, the objective function that is defined as
the addition of two terms, the fidelity term that is defined as
a squared error and a prior term. For the prior term, the total
variation (TV) prior [1-5] and its variants are widely applied.
The standard TV prior is defined from by the sum of the mod-
ulus of gradients of intensity surface of the image. The gra-
dients is derived from the differences of neighboring pixels,
which correspond to directional derivatives. In the field of the
mathematical morphology, the modulus of the gradients are
obtained by morphological gradients [6,7]. The morpholog-
ical gradient is defined as the difference between the dilated
and eroded images and is applied to edge detection [7]. The
Morphological gradient is one of the image feature that is ob-
tained by morphological operators. Recently, several image
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priors for image recovery that can be interpreted as morpho-
logical features have been proposed for resolving the regular-
ization problem.

The total subset variational prior (TSV) [8] is defined
from the difference between the maximum and minimum
of a local clique. This difference can be interpreted as the
morphological gradient. For the minimization, the objec-
tive function of the regularization is approximated as the
continuously differentiable function by using the log-sum-
exp function [9] that approximates the max and min func-
tions [8]. The prior that includes the morphological feature
can be easily computed, however, the minimization requires
a quasi-Newton method with the approximation. In Ref. [10],
morphologic regularization was proposed for achieving the
super-resolution of images. In this regularization, the prior
is defined as the difference between the closing [6] and
opening [6]. The objective of this prior is to attenuate the
irregular intensity variations that appear in the recovered
high-resolution images. The minimization of the objective
function is achieved with the convex optimization techniques
without approximation. Due to the property of the morphol-
ogy, the computational cost for the minimization is lower than
other priors. However, the noise components that is invariant
with opening and closing will be preserved in the recovered
image. Therefore, this prior is applied to achieve image su-
per resolution under the assumption that the variance of the
noise is relatively small. In order to remedy this problem,
soft-morphology is introduced in Ref. [11]. However, opti-
mization for the soft-morphology still requires approximation
with log-sum-exp functions and the quasi-Newton method.

In this paper, we propose the image prior includes an ex-
tension of the morphological gradient. The morphological
gradient is extended to the higher-order morphological gra-
dient that includes higher-order differentials. We propose the
image prior that is defined as the weighted sum of the higher-
order morphological gradients in order to suppress the arti-
facts that appear in the recovered image. In order to minimize
the objective function, we apply the subgradient method [12].
Computation of the subgradient of the morphological gradi-
ent can be achieved during the erosion and dilation operation
and requires low computational costs.

In the next section, we briefly explain the image regular-
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ization. In Sect. 3, the higher-order extension of the mor-
phological gradient is introduced for the image prior. In Sect.
4, the subgradient of the proposed prior are derived to apply
the subgradient method for image denoising. Finally, the pro-
posed prior is applied to image denoising and is comapred
with the standard TV.

2. IMAGE REGULARIZATION WITH
SMOOTHNESS PRIORS

The observed image y is assumed to be observed as y =
Hw + e, where w is the original image without degradation
and H denotes a degradation process. e is the additive noise,
which is supposed to be Gaussian in this paper. Assuming
that the degradation process H is known, the estimation of
the original image is obtained from the regularization as

1
W € argmin o |y —Hf |3 +AR(f). (1)

where R(g) is the image prior term. A is the regularization
parameter. This problem can be transformed into a constraint
minimization problem that is

mfinR(f) subjectto ||y — Hf ||2< 0. )

In the form of (1), the regularization parameter A has to be
specified. The optimum A depends on both of the charac-
teristics of the image and noise. If the standard deviation of
the noise is known, Hw exists on the L5 ball, of which radius
and center coincide with the standard deviation and y, respec-
tively. Usually, o in (2) is hence specified from the standard
deviation of the noise. In this paper, we discuss the denois-
ing problem in the form of (2) where o corresponds to the
standard deviation of the Gaussian noise and H is an identity.

In these regularization, the local smoothness of the recov-
ered image is measured as the image prior term R(f), which
is the sum of the function of the intensities around the coordi-
nate x € Z? as

R(f) = > G ({fetylyec) 3)

x€L

where C is a set of the coordinates that defines neighboring
coordinates of x. For the TV prior, G is defined as the modu-
lus of the discretized gradient. In this paper, we introduce the
morphological gradient, which can be computed by morpho-
logical operators.

3. MORPHOLOGICAL GRADIENTS

For two-dimensional continuous function f(x), where x €
R? denotes a two-dimensional coordinate, the dilation and
erosion f(x) are respectively defined as

dyo f(x) = sup f(y) and e,o f(x) =

inf .4
JSup yeprf(y) “)
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The region pBy is the circle with the radius p and the center
x for two-dimensional functions. The morphological gradi-
ent [7] is defined as the limit of the difference between the
dilation and the erosion as

go f(x) = lim I 0 f) )

p—0 2p

The morphological gradient corresponds to the modulus of
the gradient |V f(x)| for a differentiable function [7].

For a discrete image { fx }xezz2, the dilation and erosion
are respectively defined as

Dofx:gleaé(fx+y and Eofng,nei‘rslfx—ky- (6)

S is a set of the coordinates and is referred to as a structuring
element (SE). In general, the structuring element is defined
as a subset of the three-dimensional space that is spanned by
spatial and intensity axes. In this study, the intensity of the SE
is omitted for discussion. The morphological gradient for dis-
crete images is defined as the difference between the dilation
and erosion as

Mofx:Dofx_Eofx @)

with the SE S. For the discrete images, the property of the
morphological gradient depends on the SE S of the pair of
the dilation and erosion. In Ref. [7], several extensions of the
basic morphological gradient are introduced for edge detec-
tion.

The morphological gradient (7) can be represented with
discrete differentiations as

Mo fy = ma}éslfx+y1 - fx+yz|- 3)

Y1,Y2
Therefore, the morphological gradient can be interpreted as
the L, norm of the absolute differences of possible pairs in
the SE that are translated to the coordinate x. On the other
hand, the discretized gradient that is employed for the stan-
dard TV is defined as

Gx = \/(fx_fx—(l,ﬂ))2+(fx_fx—(O,l))2~ &)

In the regularization with TV, the TV prior term is defined as
the sum of the discretized gradient over the entire image and
is the L1-Lo norm of the intensity differences, which approx-
imate directional derivatives. The sum of the morphological
gradient corresponds to the L-L., norm of the intensity dif-
ferences.

By the way, one of problems of the image recovery with
the TV prior is the staircase artifact that appears as undesir-
able intensity discontinuities in the recovered image. In order
to avoid staircase artifact, the higher-order derivatives are in-
cluded in the priors. In Ref. [3], the TV of the gradient are
included in the prior. The higher-order derivatives are also
employed in Ref. [4]. In order to remedy the staircase artifact,
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we extend the morphological gradient to include higher-order
derivatives. We define the first-order morphological gradient
as the basic morphological gradient in (7), M7 fx = M o fx.
The n-th order morphological gradient is defined by the com-
position of the morphological gradient as

Myofxy=MoMoMo---Mo fy. (10)

n

Since the first-order morphological gradient approximates the
modulus of the gradient |V f(x)|, the second-order morpho-
logical gradient approximates |V|V f(x)||. In this study, we
employ the second-order morphological gradient to suppress
staircase effect that will occur in recovered images.

4. IMAGE REGULARIZATION WITH
MORPHOLOGICAL GRADIENTS

We apply the morphological gradient and its higher-order ex-
tensions to the image prior. As the form of the prior in (3), the
higher-order morphological gradient that includes the first to
n-th morphological gradient is

n

Ry (£) =) "> aiM;o fx. (11

i=1 x€eZ

The constraint . ; o; = 1 is imposed on the weighting
parameters {o; }1_; to ignore scale of the parameters. The di-
lation, negative of the erosion and morphological gradient are
convex functions, since the max function is a convex function
[9]. Therefore, the regularization (2) with the basic morpho-
logical gradient (n = 1) is a constrained convex minimiza-
tion problem. In order to minimize the morphological gradi-
ent prior, we employ the projected subgradient method [12].
The projected subgradient method is a simple and classical
method for convex minimization. The iteration of the pro-
jected subgradient method start with the initial guess of the
recovered image f(?). The update rule is as

g = p (f(k) — ByVR (f<k>)) (12)

where VR (f) is the search direction at k-th iteration and is
specified as any subgradient of the regularization function R.
«ay; 1s an monotonically decreasing sequence. In this study,
we employ 8 = v/k where v is a constant and obtained
prior to the iteration. For image denoising, P, is a projection
operation onto the [-ball, of which center is specified as y
and is implemented as

ey . (13)
Ty +y otherwise .

{f for |y —f|2<0c

In order to implement the projected subgradeint method, we
derive the subgradient of the morphological gradient. The
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subdifferential of the dilation is derived from the subdifferen-
tial of the max function [9] and is

1,ifz € SxandVy € Sx,y # z, f» > fy
0,ifz¢ Sxorf, <Do fx
€ [0,1] otherwise

dDo fx
of.

(14
where Sy is a set of coordinates that are supported by the SE
that is translated to the coordinate x. The subdifferential of
the erosion is

—1,ifz € Sy andVy € Sx,y # 2, f < Iy
=40, ifz¢ Sxor f, > Eo fx
€ [-1,0], otherwise.

O(—Eo fx)
0f,
(15)

For the update rule in (14), we choose the subgradients of the
dilation and erosion as

0D o fx 1,ifze Sgxand f, = Do fx
= . (16)
0fz 0,ifz ¢ Sxorf, < Do fy
and
d0(=Fofy) J—1,ifz€Scand f, > FEo fx (17
0fz B 0, ifz¢ Sxor f, > FEo fx.

from the subdifferentials, respectively. With these subgradi-
ents, VR; (f) for the iteration in (12) with the basic morpho-
logical gradient is obtained as

SRy (]) ~0Dofx 6(—Eofy)
AP DR TA R T

(18)
x€EL

In actual computation, the summation of (16) is given by
counting the occurrence of the intensity f, in the dilated im-
age. The summation of (17) is also given by counting occur-
rence in the eroded image. Therefore, the computation of the
search direction VR (f) can be achieved during the morpho-
logical operations.

For highr-order morphological gradients, n > 1, R, (f)
is not convex. However, the proper search direction that is
composed as

R, (f) _ = OM; o fx
5, =22y, 1)

1=1 x€ZT

is given, then the prior will converge to any saddle point. In
order to compute V Rz (f), we use the chain rule. Use of
the chain rule has been introduced in Ref. [10] for the mor-
phologic regularization, of which prior consists of the open-
ing and closing that are composite functions of dilation and
erosion. The subgradient of the second-order morphological
gradient is

dMso fx dMso fx M o fy
5f. dMofy o0f,

yeT

(20)
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Table 1. Comparison of PSNRs of the denoised images.
Image | og | TV | 1stMG | 2nd MG

Lena 10 | 33.29 | 33.50 33.95
20 | 30.17 | 30.45 30.95

30 | 28.29 | 28.62 29.15

Man 10 | 32.00 | 32.14 32.35
20 | 28.86 | 29.01 29.24

30 | 27.25 | 27.41 27.66

Boat 10 | 31.73 | 31.95 32.19
20 | 28.50 | 28.73 29.03

30 | 26.73 | 2692 27.26

Barbara | 10 | 30.01 | 30.22 30.72
20 | 26.20 | 26.34 26.87

30 | 24.56 | 24.64 25.07

Table 2. Comparison of SSIMs of the denoised images.
Image | og | TV | IstMG | 2nd MG

Lena 10 | 0.948 | 0.952 0.957
20 | 0.900 | 0.909 0.917

30 | 0.859 | 0.869 0.882

Man 10 | 0.941 | 0.945 0.949
20 | 0.872 | 0.881 0.891

30 | 0.817 | 0.828 0.843

Boat 10 | 0.943 | 0.948 0.951
20 | 0.875 | 0.886 0.895

30 | 0.817 | 0.830 0.843

Barbara | 10 | 0.946 | 0.948 0.951
20 | 0.874 | 0.876 0.885

30 | 0.817 | 0.818 0.827

In this computation, M5 o fx/dM o f, can be computed as
same as the basic morphological gradient. In the case of the
second-order, the search direction for the iteration can also
be computed during the morphological operation with several
multiplications for weighing. In this paper, we show only the
subgradient for n = 2, however, iterative use of the chain rule
yields the subgradient for any order.

5. EXAMPLES OF IMAGE DENOISING

In this section, we provide several examples of the im-
age denoising with the morphological gradient priors. We
employ four standard images, Lena, Man, Boat and Bar-
bara, of which size is 512 x 512 pixels. The degraded
images are generated by adding the Gaussian noise with
the standard deviation o to the original images. The SE
of the dilation and the erosion is specified as 2 x 2 flat
square SE. So, the set of S consists of four coordinates,
S = {(0,0),(1,0),(0,1),(1,1)}. For the iteration (12), we
specify the initial image £(°) as the degraded images for all

1863

A}

(a) TV (PSNR: 30.17 dB)

(b) First-order Morphological Gradient (PSNR: 30.45 dB)

(

Fig. 1. Examples of original and noisy image. (Lena)

c) Second-order Morphological Gradient (PSNR: 30.95 dB)

examples. The constant v is specified to be proportional to
a noise level and is set to o/ maxx [0R,, /0 fx|. The iter-
ation is terminated when the relative change in the prior in
(2) is less than a specified threshold. For the prior includes
the second-order morphological gradient, the weighting pa-
rameters a;; and oo have to be specified. We experimentally
choose {1, a2} = {0.75,0.25}.

In each example, o of the constraint in (15) is specified
from the standard deviation of the noise. For comparison, the
results obtained by the TV prior are also shown. We realize
the TV denoising by using the Chambolle’s algorithm in Ref.
[2]. This algorithm achieves the regularization as the uncon-
strained minimization in (1). The regularization parameter \
for TV denoising is optimized to obtain || y — W |3~ NoZ
where IV denotes the number of pixels. The denoising re-
sults are evaluated in terms of the peak signal-to-noise ratio
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(PSNR) and the structural similarity (SSIM) index [13]. In
Table 1, the SNRs obtained by the TV, the first-order mor-
phological gradient and the prior includes second-order mor-
phological gradient are shown. As seen in Table 1, the large
differences between the standard TV and the first-order mor-
phological gradient cannot be observed. Both the TV and the
morphological gradient prior are obtained form discretized
versions of the modulus of the intensity gradient. Both meth-
ods hence obtain the similar results. In Fig. 1, the examples
of the denoised image that are recovered from the degraded
image with o = 20 are shown. We see the staircase arti-
facts in both results obtained by the TV prior and the first-
order morphological gradient prior. Comparing with result
obtained with the first-order (Fig. 1(b)) and the second-order
(Fig. 1(c)), the staircase effect are suppressed in the result ob-
tained by the prior includes the second-order morphological
gradient due to penalizing the second-order derivatives of the
intensity. The advantage of the use of the second-order mor-
phological gradient can also be seen the PSNRs (Table 1) and
SSIMs (Table 2). The second-order morphological gradient
improve the PSNRs in the range 0.4 — 0.8 dB over the stan-
dard TV prior. In the cases of the lower noise level, the three
methods obtains almost same SSIM index. Along with incre-
ment of the noise level, the second-order scheme improves the
SSIM due to its capability to suppress the staircase artifacts.

6. CONCLUSIONS

In this paper, the image prior based on the higher-order mor-
phological gradient is proposed. We extend the basic mor-
phological gradient to the higher-order morphological gra-
dients in order to suppress the staircase artifacts. For mini-
mization of the objective function, we employ the projected
subgradeint method. We show that the subgradient of the ba-
sic morphological gradients can be computed during the di-
lation and erosion without multiplications and other opera-
tions. This property will be utilized for the implementation of
image recovery algorithms with low computational cost. In
image denoising examples, we show that the denoising capa-
bility of the morphological gradient prior is comparable to the
standard TV. The higher-order morphological gradient has an
advantage for suppressing staircase artifacts.

In this paper, we only addressed the image denoising
problem. Evaluation of the proposed prior for other image
processing task and comparisons with other state of the arts
methods are future topics. For the TV piror, the extensions
on orientation of the gradient have been proposed in Ref. [5].
In our morphological prior, the properties of regularization
depends on the shape of the SE. The use of the adaptive mor-
phology [14], which employs spatial-varying SEs, and other
morphological techniques for the regularization is also one of
the future topic.
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